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eBPF: Powerful Framework to Extend Kernel

eBPF: Framework to safely extend Linux kernel functionality

● 🚀 Run custom programs in kernel, triggered by hooks (e.g., on function entry point)

● 🔍 Read and traverse internal kernel data structures (via in-kernel helper function)
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eBPF: Popularity and Use Cases

eBPF: Framework to safely extend Linux kernel functionality

● 🚀 Run custom programs in kernel, triggered by hooks (e.g., on function entry point)

● 🔍 Read and traverse internal kernel data structures (via in-kernel helper function)

Use cases

● 👀 Observability: trace kernel functions

● 🔒 Security: enforce security policies

● 🌐 Network: filter packets
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Userspace programs depend on syscall

eBPF programs depend on kernel internals

● E.g., functions & structs

● Large, complex, unstable

Problem: eBPF Programs Depend on Kernel Internals
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Userspace programs depend on syscall

eBPF programs depend on kernel internals

● E.g., functions & structs

● Large, complex, unstable

Impact on eBPF programs

● Fundamentally unportable

● Frequently break on different kernels

● Unclear if it work on another kernel?

Problem: Unstable Kernel Internals ⇒ Unportable eBPF Program
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Our Contribution: DepSurf
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DepSurf: a tool to analyze dependency mismatches between 

● Program Dependency Set: a set of dependencies used by an eBPF program

Program Dependency Set
void foo(int i)
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DepSurf: a tool to analyze dependency mismatches between 

● Program Dependency Set: a set of dependencies used by an eBPF program

● Kernel Dependency Surface: all dependencies exposed by a kernel

Kernel Dependency Surface
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DepSurf: a tool to analyze dependency mismatches between 

● Program Dependency Set: a set of dependencies used by an eBPF program

● Kernel Dependency Surface: all dependencies exposed by a kernel

Kernel Dependency Surface
void foo(int i), …

✅
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Our Contribution: DepSurf
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DepSurf: a tool to analyze dependency mismatches between 

● Program Dependency Set: a set of dependencies used by an eBPF program

● Kernel Dependency Surface: all dependencies exposed by a kernel

Kernel Dependency Surface
void foo(int i), …

Kernel Dependency Surface
void foo(int* i), …

✅

Program Dependency Set
void foo(int i)

❌
Mismatch



Kernel Dependency Surface Analysis

Analyzed 25 kernel images ⇒ Kernel dependency surface is highly unstable

● 📝 Kernel Source Code

● ⚙ Kernel Configuration

● 📦 Kernel Compilation

10



Kernel Dependency Surface Analysis

Analyzed 25 kernel images ⇒ Kernel dependency surface is highly unstable

● 📝 Kernel Source Code

● ⚙ Kernel Configuration

● 📦 Kernel Compilation

Consequences for eBPF programs 

● 🚨 Fail to compile, load, or attach ⇒ Explicit error 

● 🗑 Stray read                               ⇒ Incorrect garbage results

● 🤔 Missing invocation                   ⇒ Apparently correct but incomplete results 
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Program Dependency Set Analysis

Analyzed 53 eBPF programs ⇒ All depend on some unstable kernel internals

● Majority depend on internal structs and fields

● Half depend on internal functions

● Half depend on kernel tracepoints (i.e., static markers)

12



Program Dependency Set Analysis

Analyzed 53 eBPF programs ⇒ All depend on some unstable kernel internals

● Majority depend on internal structs and fields

● Half depend on internal functions

● Half depend on kernel tracepoints (i.e., static markers)

Dependency mismatches are widespread (83%)

● Function optimization

● Missing fields in structs

● Changed tracepoints
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eBPF Portability: Misconceptions and Expectations

“[The eBPF infrastructure] guarantees that existing 
eBPF programs keep running with newer kernel versions”

“[Their product] runs on most common 
Linux distributions and kernels.”

“eBPF programs are portable across different architectures”
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eBPF Portability: Reality

16󰳕 “It is difficult to write eBPF programs 
that work correctly on all kernels.”



Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len
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Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Issue #4261

● On 5.19 kernel, the function blk_account_io_start is missing
● As a result, biotop fail to start: attachment error
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Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Cause: commit “block: inline hot paths of blk_account_io_*()” 

●               void blk_account_io_start() →
● static inline void blk_account_io_start()
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Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Solution

● 8 months: Tracepoint block_io_start added to kernel
● 5 months: New OS version released with newer kernel
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Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Changing kernel is difficult

● 2 years end-to-end
● biotop still broken on older kernels
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Dependency Mismatch ⇐ Unstable Kernel Dependency Surface
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Kernel Dependency Surface
Function blk_account_io_start inlined

Program Dependency Set
Function blk_account_io_start

❌
Mismatch

Dependency mismatch caused by unstable kernel dependency surface

● >35k functions and >5k structs are unstable but widely used

● 500-1000 tracepoints are desired to be stable, but are not

Brendan Gregg:
“I have seen tracepoints change.”

Brendan Gregg:
“Tracepoints provide a stable API.”
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Dependency SurfaceDependency Surface

DepSurf

eBPF Object File Dependency Setextract Dependency Reportquery

Kernel Dependency Surface Analysis

Program Dependency Set Analysis
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See paper for implementation
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Dependency SurfaceDependency Surface

DepSurf

eBPF Object File Dependency Setextract Dependency Reportquery

Kernel Dependency Surface Analysis

Program Dependency Set Analysis
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Causes of Unstable Kernel Dependency Surface
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📝
Kernel Source Code

●New features (e.g., folio)

●Depreciations

(e.g., single-queue bio)

● Perf. optimization

● Bug fixes

⚙
Kernel Configuration

● Arch-specific definitions

(e.g., register, syscall)

● Features (e.g., NUMA)

● Parameters (e.g., timer)

● Set by OS distro

📦
Kernel Compilation

● Function Optimizations

(e.g., inline)

●Driven by compiler

●Opaque to developers
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Causes of Unstable Kernel Dependency Surface
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📝
Kernel Source Code

●New features (e.g., folio)

●Depreciations

(e.g., single-queue bio)

● Perf. optimization

● Bug fixes

⚙
Kernel Configuration

● Arch-specific definitions

(e.g., register, syscall)

● Features (e.g., NUMA)

● Parameters (e.g., timer)

● Set by OS distro

📦
Kernel Compilation

● Function Optimizations

(e.g., inline)

●Driven by compiler

●Opaque to developers



Kernel Dependency Surface Dataset

25 kernel images build by Ubuntu

● 17 versions over 8 years
○ Linux kernel 4.4 to 6.8

○ Ubuntu 16.04 to 24.04

● 5 architectures and 5 build flavors
○ x86, arm64, arm32, PowerPC, RISC-V

○ Generic, Low-latency, AWS, Azure, GCP

● 14 compiler versions

Highly extensible: effortless to add new kernel images
30



Summary of Dependency Mismatches
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📝
Kernel Source Code

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence, Change

⚙
Kernel Configuration

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence

Syscall: Availability, Traceability

Register: Layout Difference

📦
Kernel Compilation

Function: 

Full / Selective Inline

Transformation

Duplication

Name Collision



📝 Kernel Source Code: Function

Function absence

Example: page ➡ folio
● account_page_dirtied ➡ folio_account_dirtied

● migrate_misplaced_page ➡ migrate_misplaced_folio

● mark_page_accessed ➡ folio_mark_accessed

● ...

Every 2 years, 24% functions added, 10% functions removed

32

Takeaway: Kernel functions are constantly added and removed, 
causing explicit attachment error for dependent eBPF programs



📝 Kernel Source Code: Function

Function signature change

● Parameter added or removed
○ int vfs_rename(struct inode *, ... /* 5 more parameters */)

○ int vfs_rename(struct renamedata *)

● Parameter type or return type changed

● Parameter reordered

Every 2 years, 6% functions changed signature
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Takeaway: Function changes are common, causing 
eBPF programs to silently read garbage data



📝 Kernel Source Code: Tracepoint

New features (e.g., folio)

● writeback_dirty_page ➡ writeback_dirty_folio

Code maintenance

● Commit “mm/slab_common: unify NUMA and UMA version of tracepoints”

● Removed kmem_alloc and renamed kmem_alloc_node to the removed one

● “This will break some tools, but maintaining both does not makes sense.”
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Takeaway: Tracepoints are not as stable as presumed

Brendan Gregg:
“I have seen tracepoints change.”



📦 Kernel Compilation: Inline

Full inline: function copied to all call sites and disappeared from the symbol table
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Takeaway: 1/3 of kernel functions are fully inlined, causing attachment error



📦 Kernel Compilation: Inline

Selective inline: function inlined at some call sites, but not others

Example: eBPF program tracing vfs_fsync
fs/sync.c:

          int vfs_fsync() { /* logic */ }  // func definition

         long sys_fsync() { vfs_fsync(); } // inlined     ❌ NOT traced

fs/aio.c: 

   extern int vfs_fsync();                 // func declaration

    void aio_fsync_work() { vfs_fsync(); } // not inlined ✅ Traced
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Takeaway: 10% of kernel functions are selectively inlined, causing incomplete results 



Summary of Dependency Mismatches
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📝
Kernel Source Code

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence, Change

⚙
Kernel Configuration

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence

Syscall: Availability, Traceability

Register: Layout Difference

📦
Kernel Compilation

Function: 

Full / Selective Inline

Transformation

Duplication

Name Collision

See the rest in paper



Dependency SurfaceDependency Surface

DepSurf

eBPF Object File Dependency Setextract Dependency Reportquery

Kernel Dependency Surface Analysis

Program Dependency Set Analysis
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Program Dependency Set Analysis
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1. Extract Dependency Set from an eBPF program

*Simplified example



Program Dependency Set Analysis
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1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

*Simplified example



Program Dependency Set Analysis
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1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

*Simplified example



Program Dependency Set Analysis
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1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

*Simplified example



Program Dependency Set Analysis

43

1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

Takeaway: DepSurf allows developers to easily identify dependency mismatches

*Simplified example



Program Dependency Set Analysis

Analyzed 53 eBPF programs from BCC and Tracee

● 43 programs depend on structs / fields

○ 22 absence ⇒ explicit error

● 25 programs depend on functions

○ 14 selective inline ⇒ incomplete results

● 25 programs depend on tracepoints

○ 18 change ⇒ explicit error / incorrect results
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Takeaway: Dependency mismatches are widespread in eBPF programs
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Conclusion

Kernel Dependency Surface is fundamentally unstable

● eBPF programs built on it are not portable, requiring

careful development and constant maintenance

● Developers lack tools for dependency mismatches

We developed DepSurf to systematically study dependency issue

● Development: Guide decisions for kernel internal usage

● Maintenance: Validate compatibility among kernels

Raise awareness of eBPF dependency issue & facilitate a robust eBPF ecosystem
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depsurf.github.io

http://depsurf.github.io


Backup Slides
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Potential Solutions

Inherent Challenges: Unstable Kernel Dependency Surface

● Community-built compatibility layer

● Stability guarantee from the kernel

● Dependency tooling: DepSurf

Technical Challenges: Silent error with information gaps

● Linux kernel: Function inlining, transformations, …

● eBPF program: Type expectations, dependency fallbacks, …

See discussion in paper



Stability of Kernel Internals
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Location Examples Stability

uAPI Header include/uapi/ struct stat
__NR_stat Stable

Kernel Header include/linux/
include/net/

struct ext4_sb_info
vfs_stat Unstable

In-Tree Header fs/internal.h
fs/ext4/ext4.h

do_statx
ext4_getattr

Very
Unstable

C Source Code fs/sync.c
fs/ext4/inode.c

ext4_do_update_inode
ext4_chksum

Extremely 
Unstable


