Revealing the Unstable Foundations
of eBPF-Based Kernel Extensions

Shawn Zhong, Jing Liu,Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

WISCONSIN @ Microsoft

UNIVERSITY OF WISCONSIN-MADISON

eBPF: Powerful Framework to Extend Kernel

eBPF: Framework to safely extend Linux kernel functionality

e 7 Run custom programs in kernel, triggered by hooks (e.g., on function entry point)

e) Read and traverse internal kernel data structures (via in-kernel helper function)

eBPF: Popularity and Use Cases

eBPF: Framework to safely extend Linux kernel functionality

e 7 Run custom programs in kernel, triggered by hooks (e.g., on function entry point)

e) Read and traverse internal kernel data structures (via in-kernel helper function)

Use cases O
o5
e ¢« Observability: trace kernel functions .

o @ Network:filter packets

73
e [Security: enforce security policies & ﬁ.

Problem: eBPF Programs Depend on Kernel Internals

Userspace programs depend on syscall
eBPF programs depend on kernel internals
e E.g, functions & structs

® large, complex, unstable

Compact @ Userspace Programs “

Simple ¢
Stable @

Kernel Internals @:

eBPF Programs
\ grams

Kernel Internals

Large

Complex ©
Unstable 7

e.g., functions, structs
(e) &

o

Problem: Unstable Kernel Internals = Unportable eBPF Program

Userspace programs depend on syscall

Compact @ Userspace Programs "

eBPF programs depend on kernel internals Simple *
Stable @

e E.g,functions & structs Kernel Internals @)

® large, complex, unstable

Impact on eBPF programs
eBPF Programs @/

e Fundamentally unportable A

Large

e Frequently break on different kernels Complex © Kernel Internals

. Unstable 7
® Unclear if it work on another kernel? J

e.g., functions, structs
(e) &

Our Contribution: DepSurf

DepSurf: a tool to analyze dependency mismatches between

® Program Dependency Set: a set of dependencies used by an eBPF program

Program Dependency Set
void foo(int 1)

Our Contribution: DepSurf

DepSurf: a tool to analyze dependency mismatches between
® Program Dependency Set: a set of dependencies used by an eBPF program

e Kernel Dependency Surface: all dependencies exposed by a kernel

Program Dependency Set
void foo(int 1)

Kernel Dependency Surface
void foo(int i),... f%

Our Contribution: DepSurf

DepSurf: a tool to analyze dependency mismatches between
® Program Dependency Set: a set of dependencies used by an eBPF program

e Kernel Dependency Surface: all dependencies exposed by a kernel

Program Dependency Set
void foo(int 1)

/_/

Kernel Dependency Surface
void foo(int i),... f%

Our Contribution: DepSurf

DepSurf: a tool to analyze dependency mismatches between
® Program Dependency Set: a set of dependencies used by an eBPF program

e Kernel Dependency Surface: all dependencies exposed by a kernel

Program Dependency Set

void foo(int i) a

Kernel Dependency Surface Kernel Dependency Surface
void foo(int 1i),... @, void foo(int* i),... @

Kernel Dependency Surface Analysis Zi\

Analyzed 25 kernel images = Kernel dependency surface is highly unstable
e / Kernel Source Code
e < Kernel Configuration

o [y Kernel Compilation

10

Kernel Dependency Surface Analysis &\

Analyzed 25 kernel images = Kernel dependency surface is highly unstable
e |/ Kernel Source Code
e < Kernel Configuration
o [y Kernel Compilation
Consequences for eBPF programs
e LI Fail to compile, load, or attach = Explicit error
e | Stray read = Incorrect garbage results

S

e (= Missing invocation = Apparently correct but incomplete results

11

Program Dependency Set Analysis a

Analyzed 53 eBPF programs = All depend on some unstable kernel internals
e Majority depend on internal structs and fields
e Half depend on internal functions

e Half depend on kernel tracepoints (i.e., static markers)

12

Program Dependency Set Analysis a

Analyzed 53 eBPF programs = All depend on some unstable kernel internals
e Majority depend on internal structs and fields
e Half depend on internal functions
e Half depend on kernel tracepoints (i.e., static markers)
Dependency mismatches are widespread (83%)
e Function optimization
e Missing fields in structs

® Changed tracepoints

13

Outline

Motivation
Dependency Mismatch

DepSurf

e Kernel Dependency Surface Analysis
® Program Dependency Set Analysis

Conclusion

14

eBPF Portability: Misconceptions and Expectations

“[The eBPF infrastructure] guarantees that existing
eBPF programs keep running with newer kernel versions”

I~

il
eBPF Dev ﬁ “eBPF programs are portable across different architectures”}

“[Their product] runs on most common
Linux distributions and kernels.” A

eBPF Dev

15

eBPF Portability: Reality

iovisor/bcc

#4261 biotop and
biosnoop do not work

under 5.19 kernel due t...

€14 comments

haozhangphd opened on September 30,2022

iovisor/bcc

+#888 biosnoop.py and
biotop.py preprocessor
fails on kernel 4.10 due...

C,')O mmmmmm ts

e totally opened on January 7,2017

#800 biotop @

compilation error on
4.9-rc3

) 6 commen ts

@ goldshtn opened on November 5,2016 O

#703 filelife no output

3 2 comments

Q brendangregg opened on September 26,2016

iovisor/bcc

#3587 Incorrect result
while running
biolatency.py with flag...

DJA mmmmmm its

4 ismhong opened on August 19,2021

“It is difficult to write eBPF programs

that work correctly on all kernels.”

sched-ext/scx

#1320 compilation issue
for 1.0.9 - aarch64

€3 51 commen ts

tartanpion opened on February 8,2025 O

iovisor/bcc

#4261 biotop and

Case Study: biotop biosnoop do not work
under 5.19 kernel due t...

3 14 commen ts

biotop: trace block I/O operations haozhangphd opened on September 30,2022 O

® Whenever the kernel function blk_account_io_start is called
® Access Istarg struct request *reqand read field req->__data_len

17

iovisor/bcc

biotop and

Case Study: biotop biosnoop do not work
under 5.19 kernel due t...

0 14 commen ts

biotop: trace block I/O operations haozhangphd opened on September 30,2022 O

® Whenever the kernel function blk_account_io_start is called
® Access Istarg struct request *reqand read field req->__data_len

Issue #426 |

® On 5.19 kernel, the function blk_account_io_start is missing
® As aresult,biotop fail to start: attachment error

User
Bug
Report

9 >

18

iovisor/bcc

: biotop and
Case Study: biotop biosnoop do not work

under 5.19 kernel due t...

3 14 commen ts

biotop: trace block I/O operations haozhangphd opened on September 30,2022 O

® Whenever the kernel function blk_account_io_start is called
® Access Istarg struct request *reqand read field req->__data_len

Cause: commit “block: inline hot paths of blk_account_io_*()”

° void blk_account_io_start() —
e static inline void blk_account_io_start()

Kernel Distro User

Merge OS Bug
Commit Release Report

9 >

7 mo 5 mo

19

iovisor/bcc

biotop and

Case Study: biotop biosnoop do not work
under 5.19 kernel due t...

3 14 commen ts

biotop: trace block I/O operations haozhangphd opened on September 30,2022 O

® Whenever the kernel function blk_account_io_start is called
® Access Istarg struct request *reqand read field req->__data_len

Solution

e 8 months:Tracepoint block_io_start added to kernel
® 5 months: New OS version released with newer kernel

Kernel Distro User Kernel Distro

Merge OS Bug Add OS
Commit Release Report Tracept Release
>

7 mo 5 mo 8 mo 5 mo

20

iovisor/bcc

biotop and
Case Study: biotop biosnoop do not work

under 5.19 kernel due t...

3 14 commen ts

biotop: trace block I/O operations haozhangphd opened on September 30,2022 O

® Whenever the kernel function blk_account_io_start is called
® Access Istarg struct request *reqand read field req->__data_len

Changing kernel is difficult

® 2 years end-to-end
e biotop still broken on older kernels

Kernel Distro User Kernel Distro

Merge OS Bug Add OS
Commit Release Report Tracept Release
>

7 mo 5 mo 8 mo 5 mo

21

Outline

Dependency Mismatch
DepSurf

e Kernel Dependency Surface Analysis
® Program Dependency Set Analysis

Conclusion

22

Dependency Mismatch < Unstable Kernel Dependency Surface

Program Dependency Set a; X _ Kernel Dependency Surface @
Function blk_account_io_start Mismatch Function blk_account_io_start inlined

Dependency mismatch caused by unstable kernel dependency surface

e >35k functions and >5k structs are unstable but widely used

e 500-1000 tracepoints are desired to be stable, but are not

2 Brendan Gregg: Brendan Gregg: a
7 “Tracepoints provide a stable API” | 23 | “| have seen tracepoints change.” s,

Outline

DepSurf

e Kernel Dependency Surface Analysis
® Program Dependency Set Analysis

Conclusion

24

Kernel Dependency Surface Analysis

Kernel Image extract
w/ Debug Info

Dependency Surface Dataset

Program Dependency Set Analysis

eBPF Object File extract Dependency Set

Dependency Report

query

See paper for implementation

25

Kernel Dependency Surface Analysis

Kernel Image extract
w/ Debug Info

Dependency Surface I Dataset

26

Causes of Unstable Kernel Dependency Surface

>

Kernel Source Code
® New features (e.g., folio)
® Depreciations

(e.g., single-queue bio)
® Perf. optimization

® Bug fixes

®

27

¥’

Causes of Unstable Kernel Dependency Surface

>

Kernel Source Code
® New features (e.g., folio)
® Depreciations

(e.g., single-queue bio)
® Perf. optimization

® Bug fixes

) ‘

Kernel Configuration
® Arch-specific definitions
(e.g., register, syscall)
® Features (e.g.,, NUMA)
® Parameters (e.g., timer)

® Set by OS distro

28

Causes of Unstable Kernel Dependency Surface

>

Kernel Source Code
® New features (e.g., folio)
® Depreciations

(e.g., single-queue bio)
® Perf. optimization

® Bug fixes

®

Kernel Configuration
® Arch-specific definitions
(e.g., register, syscall)
® Features (e.g.,, NUMA)
® Parameters (e.g., timer)

® Set by OS distro

29

¥’

Kernel Compilation
® Function Optimizations
(e.g.,inline)
® Driven by compiler

e Opaque to developers

Kernel Dependency Surface Dataset

25 kernel images build by Ubuntu

e |7 versions over 8 years

o Linux kernel 4.4 to 6.8
o Ubuntu 16.04 to 24.04

® 5 architectures and 5 build flavors

o x86,armé4,arm32, PowerPC, RISC-V
o Generic, Low-latency, AWS, Azure, GCP

® |4 compiler versions

Highly extensible: effortless to add new kernel images

30

Summary of Dependency Mismatches

&

/4

>

Kernel Source Code

Function: Absence, Change

Tracepoint: Absence, Change

)

Kernel Configuration

31

"

Kernel Compilation

Function:

Full / Selective Inline

& .
7 Kernel Source Code: Function

Function absence
Example: page -] folio
e account_page_dirtied B folio_account_dirtied
e migrate_misplaced_page B migrate_misplaced_folio

e mark_page_accessed B folio_mark_accessed

Every 2 years, 24% functions added, 10% functions removed

Takeaway: Kernel functions are constantly added and removed,
causing explicit attachment error for dependent eBPF programs

32

7 Kernel Source Code: Function

Function signature change

® Parameter added or removed

o int vfs_rename(struct inode *, ... /* 5 more parameters */)

o int vfs_rename(struct renamedata *)

® Parameter type or return type changed
® Parameter reordered

Every 2 years, 6% functions changed signature

Takeaway: Function changes are common, causing
eBPF programs to silently read garbage data

33

7 Kernel Source Code:Tracepoint

New features (e.g., folio)
e writeback_dirty_page B writeback_dirty_folio
Code maintenance
e Commit“mm/slab_common: unify NUMA and UMA version of tracepoints”
e Removed kmem_alloc and renamed kmem_alloc_node to the removed one

e “This will break some tools, but maintaining both does not makes sense.”

Takeaway: Tracepoints are not as stable as presumed

Brendan Gregg:

3 | “l have seen tracepoints change.”

W Kernel Compilation: Inline

Full inline: function copied to all call sites and disappeared from the symbol table

Not inlined

55%

(o)
. Selectively inlined
35%

Fully inlined

Takeaway: |/3 of kernel functions are fully inlined, causing attachment error

35

W Kernel Compilation: Inline

Selective inline: function inlined at some call sites, but not others

Example: eBPF program tracing vfs_fsync
fs/sync.c:

int vfs_fsync() { /* logic */ } // func definition

long sys_fsync() { vfs_fsync(); } // inlined X NOT traced
fs/aio.c:

extern int vfs_fsync(); // func declaration

void aio_fsync_work() { vfs_fsync(); } // not inlined {4 Traced

Takeaway: 10% of kernel functions are selectively inlined, causing incomplete results
Y Y g P

36

Summary of Dependency Mismatches

>
®
|
Kernel Source Code Kernel Configuration
Function-Absence;Change Function: Absence, Change
Struct: Absence, Change Struct: Absence, Change

Fracepoint-Absence;-Change Tracepoint: Absence
Syscall: Availability, Traceability

Register: Layout Difference

37

Kernel Compilation

Function:
FaHSelective-intine
Transformation
Duplication

Name Collision

See the rest in paper

Program Dependency Set Analysis

tract
eBPF Object File exrac Dependency Set Dependency Report

query

38

Program Dependency Set Analysis

|. Extract Dependency Set from an eBPF program

a blk_ mq_start request
& 5 Function blk_account_io_start
o o 5 blk_account_io_done
O C :
O ok Struct gendisk
a < request

8 Field request::rq_disk

39 *Simplified example

Program Dependency Set Analysis

|. Extract Dependency Set from an eBPF program

2. Query Kernel Dependency Surface dataset

=
<

Kernel Dependency Surface

o
<

4.10
4.13
4.15
4.18
5.0
2:3
5.4
5.8

2. 11
5./k3
5:15
5.19
6.2
6.5
6.8

a blk_ mq_start request
= C Function blk_account_io_start
© % £ blk_account_io_done
g qC) oL Struct gendisk
ol = request

8 Field request::rq_disk

40

*Simplified example

Program Dependency Set Analysis

|. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

Kernel Dependency Surface

o M N -~ M 1N N
. < O~ A A 4 OM < 0O = < < A N 1N ©
B No Mismatch FFFFFF 8800880808 S CSO
o bik_mq_start_request | NI
— 5 Function blk_account_io_start
g-g T blk_account_io_done
O ok Struct gendisk
&= o request
q) .
a Field request::rq_disk

41 *Simplified example

Program Dependency Set Analysis

|. Extract Dependency Set from an eBPF program

2. Query Kernel Dependency Surface dataset

Kernel Dependency Surface

4.10
4.13
4.15
4.18

<
i

5.11
5/k3
9: 15
5.19

< © 1o m < © {0 ©
< < n n n O © O

A|A|SASAIF|F|F|F

B No Mismatch
a blk_mq_start_request
N change & S Function blk_account_io_start
A rull inii o 55 5 blk_account_io_done

ull Inline o) & _

: : O oY struct gendisk
Selective Inline £ o Feest
8 Field request::rq_disk

42

*Simplified example

Program Dependency Set Analysis

|. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

Kernel Dependency Surface

B No Mismatch FFFFFF 5001810818188 6 S O
Absence a blk_mq_start_request
BN change ~= 5 Function blk_account_io_start A|A|SAISAF|F|F|F
| i E o 5 blk_account_io_done
ﬂ iy g 8 n Struct gendisk
Selective Inline s a request
8 Field request::rq_disk

Takeaway: DepSurf allows developers to easily identify dependency mismatches

43 *Simplified example

Program Dependency Set Analysis

Analyzed 53 eBPF programs from BCC and Tracee
® 43 programs depend on structs / fields
o 22 absence = explicit error ' Ptruct /Field Absence
® 25 programs depend on functions
o 14 selective inline = incomplete results ‘-_,,F””CUO” selective Inline
e 25 programs depend on tracepoints

o |8 change = explicit error / incorrect results Jfracepoint Change

Takeaway: Dependency mismatches are widespread in eBPF programs

44

Outline

Conclusion

45

Conclusion

Kernel Dependency Surface is fundamentally unstable
e eBPF programs built on it are not portable, requiring
careful development and constant maintenance
e Developers lack tools for dependency mismatches

We developed DepSurf to systematically study dependency issue

® Development: Guide decisions for kernel internal usage
r

e Maintenance:Validate compatibility among kernels depsurf.github.io

Raise awareness of eBPF dependency issue & facilitate a robust eBPF ecosystem

46

http://depsurf.github.io

Backup Slides

Potential Solutions

Inherent Challenges: Unstable Kernel Dependency Surface
e Community-built compatibility layer
e Stability guarantee from the kernel
e Dependency tooling: DepSurf
Technical Challenges: Silent error with information gaps
® Linux kernel: Function inlining, transformations, ...
e eBPF program:Type expectations, dependency fallbacks, ...

See discussion in paper

48

Stability of Kernel Internals

Location Examples Stability
: : struct stat
uAPI| Header include/uapi/ " NR_stat Stable
include/linux/ struct ext4_sb_info
Kernel Header include/net/ vfs stat Unstable
In-Tree Head fs/internal.h do_statx Very
n-1ree Header fs/ext4/ext4.h ext4_getattr Unstable
fs/sync.c ext4_do_update_inode Extremely

C Source Code | o /axta/inode.c ext4_chksum Unstable

49

