
Revealing the Unstable Foundations
of eBPF-Based Kernel Extensions

Shawn Zhong, Jing Liu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

1

eBPF: Powerful Framework to Extend Kernel

eBPF: Framework to safely extend Linux kernel functionality

● 🚀 Run custom programs in kernel, triggered by hooks (e.g., on function entry point)

● 🔍 Read and traverse internal kernel data structures (via in-kernel helper function)

2

eBPF: Popularity and Use Cases

eBPF: Framework to safely extend Linux kernel functionality

● 🚀 Run custom programs in kernel, triggered by hooks (e.g., on function entry point)

● 🔍 Read and traverse internal kernel data structures (via in-kernel helper function)

Use cases

● 👀 Observability: trace kernel functions

● 🔒 Security: enforce security policies

● 🌐 Network: filter packets

3

Userspace programs depend on syscall

eBPF programs depend on kernel internals

● E.g., functions & structs

● Large, complex, unstable

Problem: eBPF Programs Depend on Kernel Internals

4

Userspace Programs

Kernel Internals

eBPF Programs

Kernel Internals
(e.g., functions, structs)

System Call

Large 🐘
Complex 🌀
Unstable 🚧

Compact 🎯
Simple 🔹
Stable 🪨

Userspace programs depend on syscall

eBPF programs depend on kernel internals

● E.g., functions & structs

● Large, complex, unstable

Impact on eBPF programs

● Fundamentally unportable

● Frequently break on different kernels

● Unclear if it work on another kernel?

Problem: Unstable Kernel Internals ⇒ Unportable eBPF Program

5

Userspace Programs
System Call

Kernel Internals

eBPF Programs

Kernel Internals
(e.g., functions, structs)

Compact 🎯
Simple 🔹
Stable 🪨

Large 🐘
Complex 🌀
Unstable 🚧

Our Contribution: DepSurf

6

DepSurf: a tool to analyze dependency mismatches between

● Program Dependency Set: a set of dependencies used by an eBPF program

Program Dependency Set
void foo(int i)

Our Contribution: DepSurf

7

DepSurf: a tool to analyze dependency mismatches between

● Program Dependency Set: a set of dependencies used by an eBPF program

● Kernel Dependency Surface: all dependencies exposed by a kernel

Kernel Dependency Surface
void foo(int i), …

Program Dependency Set
void foo(int i)

Our Contribution: DepSurf

8

DepSurf: a tool to analyze dependency mismatches between

● Program Dependency Set: a set of dependencies used by an eBPF program

● Kernel Dependency Surface: all dependencies exposed by a kernel

Kernel Dependency Surface
void foo(int i), …

✅

Program Dependency Set
void foo(int i)

Our Contribution: DepSurf

9

DepSurf: a tool to analyze dependency mismatches between

● Program Dependency Set: a set of dependencies used by an eBPF program

● Kernel Dependency Surface: all dependencies exposed by a kernel

Kernel Dependency Surface
void foo(int i), …

Kernel Dependency Surface
void foo(int* i), …

✅

Program Dependency Set
void foo(int i)

❌
Mismatch

Kernel Dependency Surface Analysis

Analyzed 25 kernel images ⇒ Kernel dependency surface is highly unstable

● 📝 Kernel Source Code

● ⚙ Kernel Configuration

● 📦 Kernel Compilation

10

Kernel Dependency Surface Analysis

Analyzed 25 kernel images ⇒ Kernel dependency surface is highly unstable

● 📝 Kernel Source Code

● ⚙ Kernel Configuration

● 📦 Kernel Compilation

Consequences for eBPF programs

● 🚨 Fail to compile, load, or attach ⇒ Explicit error

● 🗑 Stray read ⇒ Incorrect garbage results

● 🤔 Missing invocation ⇒ Apparently correct but incomplete results

11

Program Dependency Set Analysis

Analyzed 53 eBPF programs ⇒ All depend on some unstable kernel internals

● Majority depend on internal structs and fields

● Half depend on internal functions

● Half depend on kernel tracepoints (i.e., static markers)

12

Program Dependency Set Analysis

Analyzed 53 eBPF programs ⇒ All depend on some unstable kernel internals

● Majority depend on internal structs and fields

● Half depend on internal functions

● Half depend on kernel tracepoints (i.e., static markers)

Dependency mismatches are widespread (83%)

● Function optimization

● Missing fields in structs

● Changed tracepoints

13

Outline

Introduction

Motivation

Dependency Mismatch

DepSurf

● Kernel Dependency Surface Analysis
● Program Dependency Set Analysis

Conclusion

14

eBPF Portability: Misconceptions and Expectations

“[The eBPF infrastructure] guarantees that existing
eBPF programs keep running with newer kernel versions”

“[Their product] runs on most common
Linux distributions and kernels.”

“eBPF programs are portable across different architectures”

15

󰳕
eBPF Dev

󰳕
eBPF Dev

eBPF Portability: Reality

16󰳕 “It is difficult to write eBPF programs
that work correctly on all kernels.”

Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

17

Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Issue #4261

● On 5.19 kernel, the function blk_account_io_start is missing
● As a result, biotop fail to start: attachment error

18

User
Bug
Report

Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Cause: commit “block: inline hot paths of blk_account_io_*()”

● void blk_account_io_start() →
● static inline void blk_account_io_start()

19

Kernel
Merge
Commit

Distro
OS
Release

User
Bug
Report

7 mo 5 mo

Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Solution

● 8 months: Tracepoint block_io_start added to kernel
● 5 months: New OS version released with newer kernel

20

Kernel
Merge
Commit

Distro
OS
Release

User
Bug
Report

Kernel
Add
Tracept

7 mo 5 mo 8 mo 5 mo

Distro
OS
Release

Case Study: biotop

biotop: trace block I/O operations

● Whenever the kernel function blk_account_io_start is called
● Access 1st arg struct request *req and read field req->__data_len

Changing kernel is difficult

● 2 years end-to-end
● biotop still broken on older kernels

21

Kernel
Merge
Commit

Distro
OS
Release

User
Bug
Report

Kernel
Add
Tracept

7 mo 5 mo 8 mo 5 mo

Distro
OS
Release

Outline

Introduction

Motivation

Dependency Mismatch

DepSurf

● Kernel Dependency Surface Analysis
● Program Dependency Set Analysis

Conclusion

22

Dependency Mismatch ⇐ Unstable Kernel Dependency Surface

23

Kernel Dependency Surface
Function blk_account_io_start inlined

Program Dependency Set
Function blk_account_io_start

❌
Mismatch

Dependency mismatch caused by unstable kernel dependency surface

● >35k functions and >5k structs are unstable but widely used

● 500-1000 tracepoints are desired to be stable, but are not

Brendan Gregg:
“I have seen tracepoints change.”

Brendan Gregg:
“Tracepoints provide a stable API.”

Outline

Introduction

Motivation

Dependency Mismatch

DepSurf

● Kernel Dependency Surface Analysis
● Program Dependency Set Analysis

Conclusion

24

Dependency SurfaceDependency Surface

DepSurf

eBPF Object File Dependency Setextract Dependency Reportquery

Kernel Dependency Surface Analysis

Program Dependency Set Analysis

25

See paper for implementation

Dataset
Kernel Image
w/ Debug Info Dependency Surface

extract

Dependency SurfaceDependency Surface

DepSurf

eBPF Object File Dependency Setextract Dependency Reportquery

Kernel Dependency Surface Analysis

Program Dependency Set Analysis

26

Dataset
Kernel Image
w/ Debug Info Dependency Surface

extract

Causes of Unstable Kernel Dependency Surface

27

📝
Kernel Source Code

●New features (e.g., folio)

●Depreciations

(e.g., single-queue bio)

● Perf. optimization

● Bug fixes

⚙
Kernel Configuration

● Arch-specific definitions

(e.g., register, syscall)

● Features (e.g., NUMA)

● Parameters (e.g., timer)

● Set by OS distro

📦
Kernel Compilation

● Function Optimizations

(e.g., inline)

●Driven by compiler

●Opaque to developers

Causes of Unstable Kernel Dependency Surface

28

📝
Kernel Source Code

●New features (e.g., folio)

●Depreciations

(e.g., single-queue bio)

● Perf. optimization

● Bug fixes

⚙
Kernel Configuration

● Arch-specific definitions

(e.g., register, syscall)

● Features (e.g., NUMA)

● Parameters (e.g., timer)

● Set by OS distro

📦
Kernel Compilation

● Function Optimizations

(e.g., inline)

●Driven by compiler

●Opaque to developers

Causes of Unstable Kernel Dependency Surface

29

📝
Kernel Source Code

●New features (e.g., folio)

●Depreciations

(e.g., single-queue bio)

● Perf. optimization

● Bug fixes

⚙
Kernel Configuration

● Arch-specific definitions

(e.g., register, syscall)

● Features (e.g., NUMA)

● Parameters (e.g., timer)

● Set by OS distro

📦
Kernel Compilation

● Function Optimizations

(e.g., inline)

●Driven by compiler

●Opaque to developers

Kernel Dependency Surface Dataset

25 kernel images build by Ubuntu

● 17 versions over 8 years
○ Linux kernel 4.4 to 6.8

○ Ubuntu 16.04 to 24.04

● 5 architectures and 5 build flavors
○ x86, arm64, arm32, PowerPC, RISC-V

○ Generic, Low-latency, AWS, Azure, GCP

● 14 compiler versions

Highly extensible: effortless to add new kernel images
30

Summary of Dependency Mismatches

31

📝
Kernel Source Code

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence, Change

⚙
Kernel Configuration

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence

Syscall: Availability, Traceability

Register: Layout Difference

📦
Kernel Compilation

Function:

Full / Selective Inline

Transformation

Duplication

Name Collision

📝 Kernel Source Code: Function

Function absence

Example: page ➡ folio
● account_page_dirtied ➡ folio_account_dirtied

● migrate_misplaced_page ➡ migrate_misplaced_folio

● mark_page_accessed ➡ folio_mark_accessed

● ...

Every 2 years, 24% functions added, 10% functions removed

32

Takeaway: Kernel functions are constantly added and removed,
causing explicit attachment error for dependent eBPF programs

📝 Kernel Source Code: Function

Function signature change

● Parameter added or removed
○ int vfs_rename(struct inode *, ... /* 5 more parameters */)

○ int vfs_rename(struct renamedata *)

● Parameter type or return type changed

● Parameter reordered

Every 2 years, 6% functions changed signature

33

Takeaway: Function changes are common, causing
eBPF programs to silently read garbage data

📝 Kernel Source Code: Tracepoint

New features (e.g., folio)

● writeback_dirty_page ➡ writeback_dirty_folio

Code maintenance

● Commit “mm/slab_common: unify NUMA and UMA version of tracepoints”

● Removed kmem_alloc and renamed kmem_alloc_node to the removed one

● “This will break some tools, but maintaining both does not makes sense.”

34

Takeaway: Tracepoints are not as stable as presumed

Brendan Gregg:
“I have seen tracepoints change.”

📦 Kernel Compilation: Inline

Full inline: function copied to all call sites and disappeared from the symbol table

35

Takeaway: 1/3 of kernel functions are fully inlined, causing attachment error

📦 Kernel Compilation: Inline

Selective inline: function inlined at some call sites, but not others

Example: eBPF program tracing vfs_fsync
fs/sync.c:

 int vfs_fsync() { /* logic */ } // func definition

 long sys_fsync() { vfs_fsync(); } // inlined ❌ NOT traced

fs/aio.c:

 extern int vfs_fsync(); // func declaration

 void aio_fsync_work() { vfs_fsync(); } // not inlined ✅ Traced

36

Takeaway: 10% of kernel functions are selectively inlined, causing incomplete results

Summary of Dependency Mismatches

37

📝
Kernel Source Code

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence, Change

⚙
Kernel Configuration

Function: Absence, Change

Struct: Absence, Change

Tracepoint: Absence

Syscall: Availability, Traceability

Register: Layout Difference

📦
Kernel Compilation

Function:

Full / Selective Inline

Transformation

Duplication

Name Collision

See the rest in paper

Dependency SurfaceDependency Surface

DepSurf

eBPF Object File Dependency Setextract Dependency Reportquery

Kernel Dependency Surface Analysis

Program Dependency Set Analysis

38

Dataset
Kernel Image
w/ Debug Info Dependency Surface

extract

Program Dependency Set Analysis

39

1. Extract Dependency Set from an eBPF program

*Simplified example

Program Dependency Set Analysis

40

1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

*Simplified example

Program Dependency Set Analysis

41

1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

*Simplified example

Program Dependency Set Analysis

42

1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

*Simplified example

Program Dependency Set Analysis

43

1. Extract Dependency Set from an eBPF program
2. Query Kernel Dependency Surface dataset

Takeaway: DepSurf allows developers to easily identify dependency mismatches

*Simplified example

Program Dependency Set Analysis

Analyzed 53 eBPF programs from BCC and Tracee

● 43 programs depend on structs / fields

○ 22 absence ⇒ explicit error

● 25 programs depend on functions

○ 14 selective inline ⇒ incomplete results

● 25 programs depend on tracepoints

○ 18 change ⇒ explicit error / incorrect results

44

Takeaway: Dependency mismatches are widespread in eBPF programs

Outline

Introduction

Motivation

Dependency Mismatch

DepSurf

● Kernel Dependency Surface Analysis
● Program Dependency Set Analysis

Conclusion

45

Conclusion

Kernel Dependency Surface is fundamentally unstable

● eBPF programs built on it are not portable, requiring

careful development and constant maintenance

● Developers lack tools for dependency mismatches

We developed DepSurf to systematically study dependency issue

● Development: Guide decisions for kernel internal usage

● Maintenance: Validate compatibility among kernels

Raise awareness of eBPF dependency issue & facilitate a robust eBPF ecosystem

46

depsurf.github.io

http://depsurf.github.io

Backup Slides

47

48

Potential Solutions

Inherent Challenges: Unstable Kernel Dependency Surface

● Community-built compatibility layer

● Stability guarantee from the kernel

● Dependency tooling: DepSurf

Technical Challenges: Silent error with information gaps

● Linux kernel: Function inlining, transformations, …

● eBPF program: Type expectations, dependency fallbacks, …

See discussion in paper

Stability of Kernel Internals

49

Location Examples Stability

uAPI Header include/uapi/ struct stat
__NR_stat Stable

Kernel Header include/linux/
include/net/

struct ext4_sb_info
vfs_stat Unstable

In-Tree Header fs/internal.h
fs/ext4/ext4.h

do_statx
ext4_getattr

Very
Unstable

C Source Code fs/sync.c
fs/ext4/inode.c

ext4_do_update_inode
ext4_chksum

Extremely
Unstable

