
eBPF: Framework to extend Linux kernel functionality
🚀 Run custom programs in kernel
🪝 Triggered by hooks (e.g., on function entry point)
🔍 Read and traverse internal kernel data structures

Use cases
👀 Observability: Trace kernel functions
🔒 Security: Enforce security policies
🌐 Network: Process, filter, redirect packets

Popularity

Portability Challenges
● Userspace programs depend on system call layer

● eBPF programs depend on kernel internals

Impact
⚓ eBPF programs are fundamentally unportable
💥 They frequently break on different kernels
🤔 People unclear if it will work on another kernel

Accepted Paper Tuesday Session 1.1

Revealing the Unstable Foundations
of eBPF-Based Kernel Extensions

depsurf.github.io

Shawn Zhong, Jing Liu, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

Introduction

Dependency Mismatch

Kernel Dependency Surface Analysis

Program Dependency Set Analysis

DepSurf

Program Dependency Set
A set of dependencies used by an eBPF program

Kernel Dependency Surface
All dependencies exposed by a kernel

Dependency Mismatch

Cause: Unstable kernel dependency surface
Consequences

Fail to compile, load, or attach ⇒ Explicit error 🚨
Stray read ⇒ Incorrect garbage results 🗑
Missing invocation ⇒ Incomplete results ⚠

Kernel Dependency Surface
void foo(int* i), …

Kernel Dependency Surface
void foo(int i), …

Program Dependency Set
void foo(int i)

✅

❌
Mismatch

Dataset: 25 kernel images, 17 versions, 8 years, 5 architectures, 5 flavors, 14 compiler versions
Kernel Source Code 📝: Every 2 years …
● Function: 24% added, 10% removed ⇒ Explicit error 🚨

E.g., mark_page_accessed converted to folio_mark_accessed

● Function: 6% changed ⇒ Incorrect results 🗑
E.g., vfs_rename(/* 6 params */) became vfs_rename(struct renamedata *)

● Struct: 24% added, 4% removed, 18% changed ⇒ Explicit error / Incorrect results 🚨🗑
E.g., in task_struct, field long state changed to unsigned int __state

● Tracepoint: 39% added, 5% removed, 16% changed ⇒ Explicit error / Incorrect results 🚨🗑
E.g., kmem_alloc removed and kmem_alloc_node renamed to it

Kernel Configuration ⚙: See paper
Kernel Compilation 📦: Within a kernel image …
● 36% full inline (function copied to all call sites and symbol disappeared) ⇒ Explicit error 🚨
● 11% selective inline (function inlined at some call sites but not all) ⇒ Incomplete results ⚠
 fs/sync.c: int vfs_fsync() { /* logic */ } // func definition
 long sys_fsync() { vfs_fsync(); } // inlined ❌ NOT traced
 fs/aio.c: extern int vfs_fsync(); // func declaration
 void aio_fsync_work() { vfs_fsync(); } // not inlined ✅ Traced

Conclusion: Kernel dependency surface is inherently unstable More results in paper!

Kernel Source Code 📝
● New features (e.g., folio)
● Depreciations

(e.g., single-queue bio)
● Perf. optimization
● Bug fixes

Kernel Configuration ⚙
● Arch-specific definitions

(e.g., register/syscall)
● Features (e.g., NUMA)
● Parameters (e.g., timer)
● Set by OS distro

Kernel Compilation 📦
● Function Optimizations

(e.g., inline)
● Driven by compiler
● Opaque to developers

DepSurf: A tool to detect, diagnose, and analyze dependency mismatches

Results: 53 programs from BCC and Tracee ⇒ All depends on some unstable kernel internals
43 programs depend on structs: 22 affected by absence ⇒ Explicit error 🚨
25 programs depend on functions: 14 affected by selective inline ⇒ Incomplete results⚠
25 programs depend on tracepoints: 18 affected by change ⇒ 🚨🗑

Conclusion: Dependency mismatches are widespread in eBPF programs

Dependency Report

