
Revealing the Unstable Foundations

of eBPF-Based Kernel Extensions

Shawn (Wanxiang) Zhong

University of Wisconsin-Madison

Jing Liu
∗

Microsoft Research

Andrea Arpaci-Dusseau

University of Wisconsin-Madison

Remzi Arpaci-Dusseau

University of Wisconsin-Madison

Abstract

eBPF programs significantly enhance kernel capabilities, but

encounter substantial compatibility challenges due to their

deep integration with unstable kernel internals. We intro-

duce DepSurf, a tool that identifies dependency mismatches

between eBPF programs and kernel images. Our analysis of

25 kernel images spanning 8 years reveals that dependency

mismatches are pervasive, stemming from kernel source code

evolution, diverse configuration options, and intricate com-

pilation processes. We apply DepSurf to 53 real-world eBPF

programs, and find that 83% are impacted by dependency

mismatches, underscoring the urgent need for systematic

dependency analysis. By identifying these mismatches, Dep-

Surf enables a more robust development and maintenance

process for eBPF programs, enhancing their reliability across

a wide range of kernels.

ACM Reference Format:

Shawn (Wanxiang) Zhong, Jing Liu, AndreaArpaci-Dusseau, and Remzi

Arpaci-Dusseau. 2025. Revealing the Unstable Foundations of eBPF-

Based Kernel Extensions. In Twentieth European Conference on
Computer Systems (EuroSys ’25), March 30-April 3, 2025, Rotterdam,
Netherlands. ACM, New York, NY, USA, 21 pages. https://doi.org/
10.1145/3689031.3717497

1 Introduction

Software is not executed in isolation, but rather depends

strongly on the environment around it to function correctly.

For example, a C program running on Linux will execute as

planned only if both the program itself is correct, and also

the libraries and system calls it relies on [16].

One new software environment that has been gaining

importance is eBPF [74]. eBPF enables developers to create

programs that can be run in the kernel, thus extending ker-

nel capabilities in powerful ways; sandboxing technology

∗
Work partly done while at University of Wisconsin-Madison

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

EuroSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1196-1/2025/03

https://doi.org/10.1145/3689031.3717497

enables this code to be run safely within the trusted con-

fines of the kernel. Many eBPF applications exist and are

widely used in domains such as networking [18, 26, 49], stor-

age [12, 177, 183], security [27, 29, 97, 143], scheduling [1],

and monitoring and observability [74, 75, 138].

Unfortunately, the software environment for eBPF pro-

grams poses significant challenges to developers in both

crafting correct programs andmaintaining them across differ-

ent Linux kernels. eBPF programs are event-driven, triggered

by hooks (e.g., kernel functions) that can change across ver-

sions. They also peer into kernel data structures and function

parameters; these too are often modified over time. Adding

to the challenge are varying kernel configurations that alter

the presence and definition of kernel functions and structs,

as well as the intricacies of the compilation process (such

as function inline). All of these dependencies on unstable

kernel internals make realizing correct eBPF programs dif-

ficult across kernels. For example, the biotop program [76],

which monitors block I/O activity, stopped working in Linux

v5.16 when an innocuous commit inlined two critical func-

tions it relied upon. This issue persisted for two years and

required collaboration between eBPF developers and kernel

maintainers to finally resolve.

While these dependencies are crucial for eBPF programs,

there has not yet been a systematic study of eBPF depen-

dency issues. This paper explores several key questions about

these dependencies:What kernel internals do eBPF programs

depend on? How unstable are they? More importantly, how

do they affect real-world eBPF programs in practice?

In this paper, we introduce DepSurf, a tool designed to

identify dependency mismatches between eBPF programs

and kernel images. DepSurf operates in two stages. It first

analyzes kernel images to extract the dependency surface:
all kernel constructs (such as functions, structs, and trace-

points) that eBPF programs can use. This extracted data is

then processed to create a dataset of potential mismatches

that would occur if any of these constructs were used. Sec-

ond, DepSurf examines an eBPF program to produce its

dependency set: the set of kernel constructs that the program
relies upon for correct operation. By querying the collected

dataset against the dependency set, DepSurf automatically

generates a report for dependency mismatches. The source

code of DepSurf and the dataset are publicly released to

21

https://orcid.org/0009-0009-5401-3556
https://orcid.org/0000-0003-2485-4038
https://orcid.org/0000-0001-8618-2738
https://orcid.org/0000-0001-9965-7704
https://doi.org/10.1145/3689031.3717497
https://doi.org/10.1145/3689031.3717497
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3689031.3717497
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3717497&domain=pdf&date_stamp=2025-03-30

facilitate further research
1
.

DepSurf serves two objectives: to enhance the robust-

ness of eBPF program development and maintenance, and

to comprehensively study eBPF dependency issues.

For developing new eBPF programs, DepSurf enables ef-

ficient compatibility checks across a wide range of kernel

images, reducing errors and uncovering potential silent fail-

ures. For existing eBPF programs, DepSurf allows developers

to proactively identify mismatches on new kernels, allowing

them to address issues in advance.

Using DepSurf, we conduct the first comprehensive anal-

ysis of eBPF dependency issues across 25 kernel images,

spanning 17 kernel versions over 8 years, 5 architectures, 5

configuration flavors, and 14 compiler versions. We identify

three contributors to mismatches: kernel source changes,

configuration variations, and intricacies of the compilation

process. Our findings reveal constant changes to the depen-

dency surface, with 6% of functions changing signatures

every 2 years, resulting in silent errors for dependent eBPF

programs. Even tracepoints, which are presumed to be stable,

show 5% removal and 16% changes. Configuration options

strongly impact construct presence, with about a quarter of

the constructs absent across configurations. Compiler opti-

mizations cause further mismatches with 36% of functions

selectively inlined (i.e., inlined at some call sites but not

others), leading to incomplete results, and 16% transformed

with different signatures. These findings demonstrate the

unstable nature of the eBPF dependency surface.

We apply DepSurf to analyze 53 real-world eBPF pro-

grams. Our analysis reveals that eBPF programs have di-

verse dependency sets: 79% rely on structs or fields, 47%

depend on functions, and another 47% utilize tracepoints.

Notably, our findings indicate that dependency mismatches

are pervasive, affecting the vast majority (83%) of the an-

alyzed programs. These mismatches make it challenging

for developers to maintain compatibility across kernels, un-

derscoring the need for automated tools like DepSurf for

dependency analysis.

Contributions. We make the following contributions:

• We formalize the concept of a dependency surface and

present the first systematic study of dependency issues

for eBPF-based kernel extensions.

• We design DepSurf, an automated tool that diagnoses

dependency mismatches for eBPF programs, allowing de-

velopers to build and maintain robust eBPF programs.

• We develop a novel approach to analyze compiled kernel

images, enabling new opportunities for kernel research.

• We release a dataset of dependency surfaces and mis-

matches to facilitate research on dependency issues.

• We apply DepSurf to analyze real-world eBPF programs,

offering insights into dependency mismatches in practice.

1
The code and dataset are available at https://github.com/ShawnZhong/
DepSurf and https://github.com/ShawnZhong/DepSurf-dataset.

Kernel

Func, Tracepoint, Syscall,…
eBPF

Verifier

Userspace

Kernel

Syscall

Depends on source code, configuration, compilation

Verified
eBPF
Prog

eBPF
Byte
Code

eBPF
Source
Code

User
Prog

Data structuresAccess

Compile

Attach toLoad

Figure 1. Overview of eBPF-based kernel extensions.

2 Background and Motivation

2.1 Prevalence of eBPF-based Kernel Extensions

Kernel extensions have been a recurring topic in operating

system research [10, 46, 48, 68, 78, 87, 115, 121, 144]; how-

ever, only with the recent rise of eBPF are such extensions

becoming widely adopted, enabling production-ready user

programs to customize kernel behaviors without modifying

the kernel [54, 75]. As Linus Torvalds said, eBPF “has ac-

tually been really useful, and the real power of it is how it

allows people to do specialized code that isn’t enabled until

asked for” [179]; Brendan Gregg called eBPF “superpowers

for Linux” [73]. Indeed, eBPF programs are used for a va-

riety of functionality, including observability, security, and

networking.

Observability. eBPF programs can extract performancemet-

rics from the kernel by running custom code to gather and

process data at points of interest. Projects such as BCC [75]

and bpftrace [138] use eBPF to provide a high-level tracing in-

terface, enabling users to write simple scripts to troubleshoot

performance issues and debug kernel internals in real deploy-

ments [70, 101]. eBPF is used for observability in companies

like Google [147], Microsoft [42], and Cloudflare [28].

Security. Security tools such as Falco [156], Tracee [143],

Tetragon [27], and Pixie [128] use eBPF to detectmalicious ac-

tivities. Security policies can also be enforced, as in lockc [106],

bpflock [105], KubeArmor [97], eBPFGuard [43, 44], and sys-

temd [64, 94, 157]. eBPF is widely used for security in pro-

duction [28, 140, 147].

Networking. eBPF programs can customize network func-

tions, such as firewalls, load balancers, and traffic shaping,

with low overhead. Networking projects that use eBPF in-

clude Cilium [26], Calico [18], and Katran [49]; eBPF network

tools are also used throughout industry [28, 50, 51, 160, 176].

2.2 eBPF-Based Kernel Extensions

Figure 1 shows how eBPF-based kernel extensions work and

the changes they bring to the kernel ecosystem.

eBPF programs are typically written in C and subsequently

compiled into eBPF bytecode. These programs function in

an event-driven manner: they are attached to hooks in the

kernel and executed when the hooks are triggered. Running

an eBPF program involves two phases: loading and attaching.

First, a user program loads the eBPF bytecode into the kernel,

22

https://github.com/ShawnZhong/DepSurf
https://github.com/ShawnZhong/DepSurf
https://github.com/ShawnZhong/DepSurf-dataset

1 SEC("kprobe/do_unlinkat") // attach to func do_unlinkat
2 int trace_unlink(struct pt_regs *ctx) {
3 const char *str;
4 struct filename *f = (void *)ctx->si; // read 2nd arg
5 bpf_probe_read(&str, sizeof(str), &f->name); // deref
6 bpf_printk("Unlinking %s", str); // print
7 }

Listing 1. An eBPF program that prints unlinked file names.

where a verifier checks the bytecode to ensure it is safe to

run in the kernel. Second, the eBPF program is attached to

specific hooks within the kernel, and thus becomes ready to

execute.

For example, the eBPF program in Listing 1 attaches to

the kernel function do_unlinkat and prints the name of the

file being unlinked. The function trace_unlink takes a single

ctx argument of type struct pt_regs * (line 2), which con-

tains the register values at the time of the kernel function

call. This allows eBPF programs to access the arguments

passed to the kernel function (line 4). Interaction with the

kernel is through roughly 200 eBPF helper functions and 100

kfuncs implemented in the kernel [55, 125]. In lines 5 and 6,

bpf_probe_read reads kernel memory, and bpf_printk prints

a message to the kernel log.

eBPF programs can attach to various types of hooks in the

kernel [58]. The example above demonstrates a kprobe, which
enables dynamic instrumentation of over 35,000 kernel func-

tions [60]. Another common type is tracepoints, which are

static markers in the kernel code by developers [17, 62]. Sys-

tem calls also serve as attachment points for eBPF programs.

There are other subsystems that define other types of hooks,

such as uprobe [63] for user-space tracing, XDP [135] and

tc [126] for network, LSM hooks [57, 61] for security, and

sched-ext [1] for task scheduling.

2.3 Dependency Surface

We define the dependency surface as all constructs (such as

functions, structs, and tracepoints) within a kernel image

that eBPF programs can depend on. As shown in Figure 1, and

unlike narrow APIs available in other programming environ-

ments (e.g., system calls), a dependency surface is incredibly

broad, including tens of thousands of kernel functions and

data structures.

We refer to the set of dependencies that an eBPF program

relies on as a dependency set. For instance, in Listing 1, the

program depends on the kernel function do_unlinkat (with a

second argument of type struct filename), and two structs:

struct filename (with a field name of type char) and struct

pt_regs (with a field si).

A dependency mismatch occurs when a dependency of an

eBPF program is either absent from the kernel’s dependency

surface or differs from the program’s expectations. For in-

stance, if the kernel function do_unlinkat directly accepted

char * instead of struct filename * as its second argument

(as before Linux v4.15), the program will (silently) produce

incorrect results.

2.4 eBPF Portability

Unstable kernel internals create compatibility issues for eBPF

programs, undermining their portability. In this section, we

discuss the expectations of eBPF portability, the challenges

posed by unstable dependency surfaces, and the impact of

dependency issues.

Portability Expectations and Practices. The growing

adoption of eBPF has created strong expectations for porta-

bility across different kernels.

Early eBPF developers relied on conditional compilation

directives (e.g., #if LINUX_VERSION_CODE < ...) for source

code portability. However, such version checks are error-

prone and unreliable [30, 114, 149] because of backported

kernel patches and other custom modifications [52, 93, 104].

eBPF developers have now widely adopted CO-RE (Com-

pile Once, Run Everywhere) to achieve binary portability [72,

118, 119]. CO-RE provides the mechanism to “produce a sin-

gle executable binary that you can run on multiple kernel

versions and configurations” [53]. CO-RE uses relocation

during loading to avoid recompiling eBPF programs [56].

We explain the technical details of relocation in Section 7.

Relocation, however, cannot handle cases where recompi-

lation on the target kernel would have failed (e.g., when a

field does not exist). For this, CO-RE provides query inter-

faces (e.g., bpf_core_field_exists) that allow developers to

inspect type information from the kernel and implement

specific logic based on the results.

With CO-RE, eBPF developers often make broad compati-

bility claims for their programs, such as supporting “Linux 4.1

and above” [75], working with “most common Linux distri-

butions and kernels” [143], and even asserting their program

“doesn’t require a specific kernel version” [156]. Unfortu-

nately, CO-RE only provides the mechanisms for portability -

developers still need to manually identify kernel differences,

add appropriate checks, and implement necessary logic in

their code. This remains a significant challenge [45, 65], re-

quiring deep understanding of unstable kernel internals.

Reality with Unstable Dependency Surfaces. We now

examine the reality of eBPF portability with unstable depen-

dency surfaces. We focus on three critical kernel constructs

frequently used by eBPF programs: kernel functions, structs,

and tracepoints.

Kernel functions and structs are unstable, but widely used.

eBPF programs can attach to tens of thousands of internal

kernel functions and read thousands of kernel data struc-

tures, which are not guaranteed to be stable. Kernel source

code is modified continuously with functions and data struc-

tures evolving regularly. Kernel configurations introduce

further variability, changing their definitions to tailor to spe-

cific options. Even decisions in the compilation process, such

as function inline, can impact the presence of functions. De-

spite the unstable nature, these functions and structures are

still widely used in eBPF programs to achieve “superpowers”.

23

- void blk_account_io_start() { if (...) /* do work */ }
+ static inline void blk_account_io_start()
+ { if (...) __blk_account_io_start(); }
+ void __blk_account_io_start() { /* do work */ }

Listing 2. An excerpt of kernel commit be6bfe3 that broke biotop.

Tracepoints should be stable, but are not. Due to the unsta-

ble nature of kernel functions and structs, people have been

attempting to use tracepoints as a stable alternative. How-

ever, the stability of tracepoints remains a contentious is-

sue [33]. As described in Brendan Gregg’s book, BPF Per-
formance Tools, “tracepoints provide a stable API,” with a

footnote stating “I have seen tracepoints change” [74]. Li-

nus Torvalds stands with the #1 rule of kernel development,

“don’t break userspace” [162–164], elaborating that if a trace-

point change breaks userspace programs, the change will be

reverted. However, the rule is not properly enforced [178].

As we will show later, the reality is that tracepoint changes

happen surprisingly often, and such changes can break de-

pendent eBPF programs.

Impacts. Dependency issues have far-reaching impacts for

users, eBPF developers, and kernel developers.

Users. For users, dependency mismatches undermine confi-

dence in the reliability and correctness of eBPF programs. At

best, users encounter explicit errors during compilation or

loading. More concerning are silent failures, where programs

malfunction without any apparent indication. They can lead

to undetected errors or security vulnerabilities that can re-

main unnoticed for a long time [80, 81, 95, 129]. Dependency

mismatches also challenge the long-standing promise of not

breaking userspace. As a result, users may become hesitant

to upgrade their kernels, fearing potential disruptions to

their eBPF-based applications.

eBPF developers. Dependency mismatches greatly compli-

cate development and maintenance for eBPF developers [45,

65]. They cannot be certain if the unstable kernel constructs

they rely on are available for their users, and they need to

constantly update their programs to maintain compatibility.

Kernel developers. Kernel developers have traditionally been

cautious about exposing new interfaces. Some are even reluc-

tant to add new tracepoints due to concerns about maintain-

ing stability [33]. As eBPF programs gain popularity, kernel

developers could one day find themselves unable to modify

an internal interface due to widespread usage. This phenom-

enon, known as Hyrum’s law [174], has manifested in the

Linux kernel [127, 168], as well as numerous other software

systems [4, 9, 41, 131].

2.5 Case Study: A Two-Year Journey to Fix biotop

We present a case study of dependency mismatches in an

eBPF program biotop [76] to illustrate challenges in diagnos-

ing and fixing dependency mismatches. biotop is designed

to monitor block-level I/O latency. It attaches to a pair of

kernel functions at the start and end of each I/O operation

to record the time difference.

81 2 3 4 5 6 7

Kernel
Merge
Commit

Kernel
Stable
Release

Distro
OS
Release

User
Bug
Report

Kernel
Add
Tracept

Dev
Fix
eBPF

Kernel
Stable
Release

3 mo 4 mo 5 mo 8 mo 2 mo 1 mo

Distro
OS
Release

2 mo
Ideal Fix Window
Figure 2. The timeline of fixing a dependency mismatch in biotop.

Figure 2 illustrates the timeline of the issue: 1 During the

development of Linux v5.16, a commit be6bfe3 (see Listing 2)

changed a pair of functions (blk_account_io_{start, done})

to static inline. Both are used by biotop. This change

made them inaccessible for attachment and broke the pro-

gram. 2 3 months later, v5.16 was released. Ideally, a fix

should have been made before the kernel release. 3 After

4 months, a major Linux distribution, Fedora 36, was re-

leased with a new kernel. 4 5 months later, a user reported

a bug [132], citing a “failed to attach” error when running

biotop on Fedora 36. Developers first attempted to attach

to __blk_account_io_{start, done} instead, as these were

called by the original functions. However, this proved ineffec-

tive because the compiler happened to inline the start func-

tion, despite it not being explicitly marked as inline. 5 De-

velopers proposed adding two tracepoints (block_io_{start,

done}), which were merged in Linux v6.5 (5a80bd0), 8 months

after the bug report. 6 2 months later, biotop was updated

to use the new tracepoints [112]. 7 1 month later, the new

kernel with the tracepoints was released. 8 After 2 months,

Fedora 39 was released with the new kernel.

In total, 2 years passed from the merge of the problem-

atic commit to the final fix. Despite the lengthy effort, the

new tracepoints are only available for newer kernel versions,

and biotop remains broken from v5.17 to v6.4. These de-

lays could have been significantly reduced if developers had

been able to detect the dependency mismatch early, allowing

them to address it before the stable kernel release (e.g., by

implementing tracepoints alongside the initial commit).

However, no tool or automated process currently exists

for such early detection. We contacted a core BCC developer,

who responded that “any automation will be good going

forward.” We believe there is a pressing need for automated

analysis to better understand dependency mismatches, and

facilitate early detection and resolution. We revisit this ex-

ample in Section 3.3 to show how we help diagnose and fix

this case.

3 DepSurf Overview

We develop an automated tool called DepSurf with two

objectives: to conduct comprehensive analyses of eBPF de-

pendency mismatches, and to provide developers with di-

agnostics for early detection and resolution of dependency

mismatches. These diagnostics help developers build robust

eBPF programs and efficiently maintain existing ones. In

this section, we outline the design of DepSurf, detail our

methodology for the study, demonstrate usage scenarios,

and discuss the implementation details.

24

https://github.com/torvalds/linux/commit/be6bfe36db1795babe9d92178a47b2e02193cb0f
https://github.com/torvalds/linux/commit/be6bfe36db1795babe9d92178a47b2e02193cb0f
https://github.com/torvalds/linux/commit/5a80bd075f3bce24793ae1aeb06066895ec5aef0

Kernel Image + Debug Info
Function Status

(inline, transformation, duplication, name collision)

Declarations
(functions, structs, tracepoints, syscalls)extract

dep
surface

Declaration Difference
(addition, removal, change)

compare

eBPF Program Object File Dependency Set
(functions, structs, tracepoints, syscalls)

extract
dep set

Dependency Report
(mismatches & consequences)query

Dependency Surface Analysis

Dependency Set Analysis

Dataset

Figure 3. Design of DepSurf.

3.1 Design

We designed DepSurf to focus on the runtime environment

of eBPF programs: the kernel images. As illustrated in Fig-

ure 3, DepSurf operates in two stages: analysis of the de-

pendency surfaces exposed by kernel images, and analysis

of the dependency set used by eBPF programs.

Dependency Surface Analysis. DepSurf processes a set of

kernel images and the associated debug information to ana-

lyze potential mismatches within their dependency surfaces.

For each image, it extracts two types of data: the declarations

of kernel constructs (i.e., functions, structs, tracepoints, and

system calls) and function status (e.g., inline or transforma-

tion by compiler). DepSurf then compares the declarations

across kernel images to detect any constructs that have been

added, removed, or changed. For changed constructs, Dep-

Surf records the specific reasons (e.g., function parameter

added). This forms a dataset of dependency mismatches that

could arise if the constructs were used by an eBPF program.

Dependency Set Analysis. Using the dataset, DepSurf per-

forms dependency set analysis on an eBPF program to assess

its dependency mismatches across the set of kernel images.

DepSurf extracts the program’s dependency sets from the

eBPF object file, and looks up the dataset. It then generates

a report of mismatches, consequences, and implications on

each kernel image.

3.2 Analysis Methodology

Our study analyzes dependency mismatches by examining

a diverse range of kernel images. We identify three contrib-

utors to the dependency surfaces: the kernel source code,

configuration, and compilation process.

Kernel Source Code. Kernel source code is the most obvi-

ous source of dependencies. For an eBPF program to function

properly, each of its dependencies must be present in the ker-

nel source code. However, the kernel is a large and complex

system with new features, refactoring, and bug fixes being

added continuously. Kernel developers are not committed

to maintaining backward compatibility for internal inter-

faces. Thus, source code changes are frequent and inevitable,

causing the absence or variation of a construct across kernel

versions.

Kernel Configuration. Linux kernel configuration options

allow users to customize various aspects of the kernel for

different use cases. Architecture is one of the first and most

important configuration options. Other options control vari-

ous aspects of the kernel, including hardware support (e.g.,

NUMA), memory management (e.g., page size), and kernel

features (e.g., cgroup). These options change the presence

and definition of kernel constructs, thus affecting the depen-

dency surfaces. The values of these options are determined

by kernel developers and distribution maintainers; how the

configuration affects the dependency surfaces could be blind

spots for eBPF program developers and users.

Kernel Compilation. After configuration, the compiler

compiles the kernel image, applying various optimizations

that can alter the presence and signature of functions. These

optimizations, driven by complex compiler internals, are of-

ten opaque to users, making their effects difficult to predict

and understand. Moreover, changes in the source code itself

can lead to different optimization outcomes. This adds an-

other layer of complexity, as seemingly minor changes can

result in unexpected differences in the compiled image.

Selection of Kernel Images. We focus on kernels built

by Ubuntu because of their widespread adoption and popu-

larity [124]. This study includes 25 kernel images, covering

17 kernel versions over 8 years, 5 architectures (x86, arm64,

arm32, ppc, and riscv), 5 configuration flavors (generic, low-

latency, AWS, Azure, and GCP), and 14 compiler versions.

Among the 17 kernel versions, 5 are released with long-term

support (LTS)
2
: v4.4, v4.15, v5.4, v5.15, and v6.8 (for Ubuntu

16.04, 18.04, 20.04, 22.04, and 24.04). To ensure the accuracy

of the data, we source kernel images and associated debug

information from the linux-image-*-dbgsym packages built

and maintained by Ubuntu [167].

3.3 Usage Scenarios

DepSurf offers valuable support for both development and

maintenance of eBPF programs. When developing new eBPF

programs or adding new dependencies to existing ones, Dep-

Surf enables efficient compatibility checks across diverse

kernel images. This allows developers to make informed

decisions about which kernel constructs to rely upon. Fur-

thermore, it reduces the risk of both explicit errors and silent

failures that might otherwise go unnoticed. For maintenance,

2
Ubuntu maintains its own schedule for LTS support, which differs from

the schedule of the upstream Linux kernel team.

25

Kernel
Version
(x86)

Arch
(v5.4)

Function Tracept Field Function
biotop readahead

blk
_m

q_s
ta

rt_
req

ue
st

blk
_a

cco
un

t_i
o_s

ta
rt

blk
_a

cco
un

t_i
o_d

on
e

__b
lk

_ac
co

unt
_io

_s
tar

t
__b

lk
_ac

co
unt

_io
_d

one
blo

ck
_io

_s
tar

t
blo

ck
_io

_d
one

req
ue

st:
:r

q_d
isk

req
ue

st_
qu

eue
::d

is
k

__d
o_

pag
e_

cac
he_

re
ada

he
ad

do_
pa

ge_
ca

che
_ra

__p
ag

e_c
ac

he_
all

oc
mar

k_
pag

e_
acc

ess
ed

Dependency Set

4.4
4.8

4.10
4.13
4.15
4.18
5.0
5.3
5.4
5.8

5.11
5.13
5.15
5.19
6.2
6.5
6.8

arm64
arm32

ppc
riscv

De
pe

nd
en

cy
 S

ur
fa

ce

Δ
Δ
SΔ
SΔ
F
F
F
F

S
S
S
S
S

SΔ
Δ
Δ
Δ
Δ
Δ
Δ
Δ
F
F
Δ
Δ

F
F

Δ
Δ
Δ
Δ
SΔ

S
S
S
F
F
F
F

S
S
S
S
S
S
S
S
S
ST
ST
S
S
F
F

S
DF
S

DF

No Mismatch
Absence
Change
Full Inline
Selective Inline
Transformation
Duplication
Name Collision

Figure 4. Dependency set analysis of biotop (left) and readahead
(right). Columns represent the set of dependencies used by the

program; structs are flattened to fields. Not all fields are shown

due to space. Each row represents a dependency surface of a ker-

nel image. The top shows x86 images across 17 versions, and the

bottom shows images from 4 additional architectures. Each cell

indicates if there is a dependency mismatch on the kernel image.

Gray indicates mismatches due to absence, and red signals other

types of mismatches, with letters labeled showing the causes. Name

collision (C) does not occur in the examined programs and kernels.

developers can leverage DepSurf to proactively verify com-

patibility with the latest kernels. For issues identified during

kernel release candidates, eBPF developers can provide feed-

back to kernel developers before stable releases (e.g., 9c2136b).

To demonstrate DepSurf’s practical utility, we analyze

two eBPF programs: biotop [76] and readahead [77]. Figure 4

presents their analysis reports, providing a comprehensive

view of dependency mismatches across kernel images.

Diagnose biotop. We revisit the example of biotop from

Section 2.5. As shown in Figure 4 (left), biotop depends on 5

functions, 2 tracepoints, and multiple structs.

DepSurf shows that the kernel function blk_mq_request

(1st column) has no mismatches across all examined images.

We next consider the evolution of two pairs of functions:

(__)blk_account_io_{start, done}. For biotop to function

correctly, it needs to monitor one of these pairs. The signa-

ture of kernel function blk_account_io_start (2nd column)

has been changed (Δ) with a parameter removed since v5.8

(b5af37a). Since v5.19 (be6bfe3), the function is fully inlined

(F), corresponding to the attachment error mentioned earlier.

DepSurf shows the full inline of __blk_account_io_start

(4th column), explaining why the first fix attempt failed.

DepSurf reveals that while tracepoints block_io_{start,

done} were added in v6.5 (5a80bd0), this addition does not

address issues in earlier versions like v5.19 and v6.2. For

fields, DepSurf shows that request::rq_disk is changed to

request_queue::disk in v5.15, and both fields coexist in that

version.

Fix readahead. We use readahead to show how DepSurf

helps to diagnose and fix dependency mismatches. The pro-

gram readahead (right) depends on 4 functions, with 3 of

them having mismatches. Given the report, we pinpoint the

kernel commit or configuration option that causes the mis-

match, and fix the program by providing fallbacks [181].

We first trace the evolution of the first two functions.

The return type of __do_page_cache_readahead is changed

in v4.18 (c534aa3). A refactor in v5.8 (2c68423) leads to selec-

tive inline (S), where the function is only inlined at some

call sites. The function is then renamed to do_page_cache_ra

in v5.11 (8238287). Later, in v5.18 (56a4d67), the function is

marked as static which results in full inline; meanwhile, an-

other function page_cache_ra_order (not in the figure) is ex-

posed instead. To address the issue after v5.18, we modify the

program to first attempt attaching to page_cache_ra_order,

falling back to other functions if it is not available.

For function __page_cache_alloc, in v5.16 (bb3c579), it be-

comes a simple wrapper for filemap_alloc_folio, resulting

in full inline (F) reported by DepSurf. We fix the mismatch

by trying to attach to filemap_alloc_folio first.

DepSurf also reports the function duplication (D) and full

inline on arm32 and riscv. This occurs because both images

disabled CONFIG_NUMA, which results in the function being

defined as static inline in a header file, and duplicated in

multiple C source files that include the header.

Summary. We demonstrate that DepSurf helps diagnose

nuanced dependency mismatches arising from the complex

interplay of source code changes, configuration-dependent

behavior, and intricacies of the compilation process. While

some mismatches can be fixed through careful programming,

others require enhancements to the eBPF infrastructure. We

explore these potential improvements in Section 6.

3.4 Implementation

DepSurf is implemented in 4.7k lines of Python. The main

challenge of DepSurf is to identify and extract the relevant

information from binary files. Our in-depth research on ker-

nel internals, debug information, and CO-RE has enabled us

to develop a robust solution.

Dependency SurfaceAnalysis. From a kernel image vmlinux

in ELF format [3], DepSurf combines data from the DWARF

debug sections [31, 32, 59], symbol table, and data sections [2]

to extract the following information:

Functions. DepSurf parses the debug information to obtain

function declarations, including the function name, parame-

ter names, parameter types, and return type. To determine

26

https://github.com/torvalds/linux/commit/9c2136be0878c88c53dea26943ce40bb03ad8d8d
https://github.com/torvalds/linux/commit/b5af37ab3a2b143e278340d2c6fa5790d53817e7
https://github.com/torvalds/linux/commit/be6bfe36db1795babe9d92178a47b2e02193cb0f
https://github.com/torvalds/linux/commit/5a80bd075f3bce24793ae1aeb06066895ec5aef0
https://github.com/torvalds/linux/commit/c534aa3fdd149fab18b094375f334b4bb3635cbf
https://github.com/torvalds/linux/commit/2c684234d36f7e8c80414e4a772911d407e821fa
https://github.com/torvalds/linux/commit/8238287eadb2ddaedd920ba06021c33ec36d0320
https://github.com/torvalds/linux/commit/56a4d67c264e37014b8392cba9869c7fe904ed1e
https://github.com/torvalds/linux/commit/bb3c579e25e5757bc5bac1333f4a56dfebf7cb91

the inline status of a function, DepSurf examines the inline

attribute in all instances of the function and checks its pres-

ence in the symbol table. DepSurf identifies transformed

functions by detecting specific suffixes in their symbol names.

To handle functions with the same names, DepSurf records

the file path and line number, allowing it to distinguish be-

tween function duplications and name collisions.

Structs. DepSurf extracts struct definitions from the debug

information. Named nested structs are treated as separate

structs. Fields in anonymous nested structs are flattened

into the parent struct. Array lengths are recorded and type

quantifiers (e.g., const) are preserved.

Tracepoints. DepSurf extracts tracepoints from the array

bounded by __{start,stop}_ftrace_events, following the

same logic as the kernel. To statically extract this data with-

out booting the kernel, we implemented a generic parser

that interprets and dereferences contents in the data sec-

tions. The parser also handles architecture-specific details

such as pointer size, endianness, and relocation.

System Calls. DepSurf reads the sys_call_table array for

the addresses of system calls, and then reverse-looks up their

names from the symbol table.

Dependency Set Analysis. From an eBPF object file, Dep-

Surf parses section names to identify the hooks used by

the program, such as kernel functions, tracepoints, and sys-

tem calls [85]. Dependencies on structs and fields are ex-

tracted from the .BTF.ext section used for CO-RE reloca-

tion [3, 56, 85, 120]. For chained member access expressions

(e.g., a[1].b->c), DepSurf records all intermediate structs

and fields in the chain. Fields not directly accessed by the

eBPF program are not recorded.

Usability and Performance. Users can easily incorporate

new kernel images and eBPF programs by providing their

paths. Extracting the dependency surface of a kernel image

takes on average 104 seconds, with processing times ranging

from 58 to 132 seconds
3
. Kernel images are processed in par-

allel. Computing the declaration differences across 17 kernel

images completes in 3 seconds. Dependency set analysis of

an eBPF program finishes within a fraction of a second.

4 Dependency Surface Analysis

This section presents our comprehensive analysis of depen-

dency surfaces, leveraging the dataset generated by DepSurf

from a diverse collection of kernel images. We begin with

an overview of the dependency mismatches, consequences,

and implications, followed by an in-depth analysis.

Dependency Mismatches. Table 1 summarizes our key

findings on mismatches that can occur when eBPF programs

use the kernel constructs. For each type of construct in the

dependency surface, we report the causes of mismatches,

their frequencies, and the consequences. We identify three

contributors that shape the dependency surface:

3
Measured on an M1 Macbook Air running a Ubuntu 24.04 virtual machine.

Type Cause Freq Consequence

S
o
u
r
c
e
C
o
d
e Function

Addition/Removal 24%/10% Attachment Error

Change 6% Stray Read

Struct

Addition/Removal 24%/4% Compilation Error

Change 18% Stray Read or CE

Tracept

Addition/Removal 39%/5% Attachment Error

Change 16% Stray Read or CE

C
o
n
fi
g
u
r
a
t
i
o
n

Function

Addition/Removal 26%/25% Attachment Error

Change 0.3% Stray Read

Struct

Addition/Removal 24%/22% Compilation Error

Change 1.8% Stray Read or CE

Tracept Addition/Removal 8%/34% Attachment Error

Syscall

Availability by arch Attachment Error

Traceability by arch Missing Invocation

Register Difference by arch Relocation Error

C
o
m
p
i
l
a
t
i
o
n

Function

Full Inline 36% Attachment Error

Selective Inline 11% Missing Invocation

Transformation 16% Attachment Error

Duplication 12% Missing Invocation

Name Collision 0.6% Stray Read

Table 1. Summary of dependency mismatches. The percentages

in the “Freq” column represent (1) for source code: the maximum

differences between two consecutive LTS versions; (2) for configura-

tion: the maximum differences compared to the generic x86 kernel

for v5.4; (3) for compilation: the fractions of affected functions. All

compilation errors (CE) also imply relocation errors.

Consequence Implication

Compilation Error (CE)

Explicit Error (before execution)⇒ Relocation Error

Attachment Error

Stray Read Incorrect Result (might be detectable)

Missing Invocation Incomplete Result (difficult to detect)

Table 2. Implications for the consequences in Table 1 (last column).

Kernel source code (§4.1). DepSurf’s analysis across kernel

versions reveals substantial changes in the presence and def-

inition of constructs. Between two LTS releases, the addition

of new constructs is significant: up to 24% for functions and

structs, and 39% for tracepoints. Conversely, removals oc-

cur at rates of 10%, 4%, and 5% respectively. Both additions

and removals lead to the absence of constructs between ker-

nel versions. Moreover, existing constructs often change

between versions. Our analysis shows that 6% of functions,

18% of structs, and 16% of tracepoints experience changes in

their definitions between LTS releases.

Kernel configuration (§4.2). Across kernel configurations,

DepSurf finds that the presence of many constructs is af-

fected: up to 26% of functions, 24% of structs, and 8% of

tracepoints are added, and 25%, 22%, and 34% are removed

respectively. In contrast, changes to existing constructs are

minimal: only 0.3% of functions and 1.8% of structs are mod-

ified, with no changes observed in tracepoints. Furthermore,

system call availability and traceability vary depending on

the architecture. Architecture-specific register layouts im-

pact eBPF programs that access function arguments.

27

Kernel compilation (§4.3). DepSurf’s analysis of the com-

pilation process reveals several mismatches related to func-

tions: 36% of them are fully inlined, whereas 11% are inlined

only on some call sites. 16% of the functions are transformed

by the compiler. Function duplication and name collisions

affect 12% and 0.6% of the functions respectively.

Takeaway 1: Dependency surfaces are inherently unstable,

driven by the evolving source code, diverse configuration

options, and intricacies in the compilation process.

Consequences and Implications. Table 2 presents the con-

sequences and implications of the dependency mismatches.

Explicit error. Compilation errors, relocation errors, and at-

tachment errors are explicit errors reported before an eBPF

program’s execution. These mismatches primarily stem from

the absence of necessary constructs in the kernel image.

For example, a missing field triggers a compilation error,

or causes a relocation error when loading a once-compiled

program on a different kernel. If the expected hook (e.g.,

function, tracepoint, or system call) is absent, an attachment

error is raised. A construct may be absent for several reasons.

For example, the kernel image predates the version where

the construct was added, or postdates the version where the

construct was removed. For functions specifically, absence

can also result from compiler optimizations such as full in-

line and transformation. These explicit errors serve as clear

indicators of mismatches between the eBPF program and the

target kernel version.

Incorrect result. Changes to function signatures or struct

field types can lead to stray reads. Since eBPF programs ac-

cess function arguments through untyped registers, changes

in a function’s signature lead to the program reading incor-

rect data. Similarly, when accessing struct fields, if a field’s

type changes to one compatible with the old type (e.g., char to

int), the program can still compile and run but misinterpret

the data. Although some runtime checks may detect some

data validity issues, many errors still propagate undetected.

For example, passing invalid addresses to bpf_probe_read re-

turns an error code, which is often unchecked by developers.

Incomplete result. Missing invocations can lead to seem-

ingly reasonable but incomplete results. This can arise from

several causes: 1) Selective inline, where a function is inlined

at some call sites but not others, resulting in missed invoca-

tions at the inlined locations. 2) Function duplication, where

only the first instance of a duplicated function is attached,

missing subsequent ones. 3) Incomplete tracing support for

certain system calls. These missing invocations pose a sig-

nificant challenge in terms of detection and diagnosis, as the

partial results may appear valid despite being incomplete.

Takeaway 2: Undetected dependency mismatches can lead

to silent incorrect or incomplete results during execution.

Function Struct Tracepoint

+% −% Δ% # +% −% Δ% # +% −% Δ%

L
T
S
(
2
y
r
)

4.4 36k

24 7 5

6.2k

24 4 18

502

39 5 8

4.15 42k

21 8 4

7.3k

19 4 15

675

15 3 8

5.4 48k

22 10 5

8.4k

17 6 16

752

14 5 16

5.15 54k

23 8 6

9.3k

16 4 16

818

18 4 14

6.8 62k 10.5k 932

R
e
g
u
l
a
r
R
e
l
e
a
s
e
s
(
6
m
o
)

4.4 36k

8 3 2

6.2k

9 2 9

502

7 - 5

4.8 38k

4 2 1

6.6k

3 1 6

539

5 1 3

4.10 39k

7 3 2

6.8k

5 1 9

559

15 1 2

4.13 41k

5 1 1

7.1k

5 1 5

635

9 2 3

4.15 42k

9 3 2

7.3k

5 2 7

675

4 3 1

4.18 44k

4 3 2

7.6k

4 2 7

683

4 0.4 3

5.0 45k

6 2 1

7.8k

6 1 7

704

5 0.1 3

5.3 47k

3 1 1

8.2k

3 1 3

737

2 - 0.3

5.4 48k

14 6 2

8.4k

6 3 8

752

6 2 7

5.8 52k

7 2 2

8.6k

6 2 7

785

4 1 3

5.11 54k

3 5 1

9.0k

4 1 4

813

1 2 2

5.13 53k

3 2 1

9.2k

3 1 5

805

2 0.5 6

5.15 54k

7 3 2

9.3k

4 2 7

818

6 3 6

5.19 56k

5 3 2

9.6k

4 1 6

843

4 0.4 4

6.2 57k

6 1 2

9.8k

3 1 6

871

6 1 5

6.5 59k

6 2 1

10.0k

5 0.5 6

917

2 0.1 2

6.8 62k 10.5k 932

Table 3. Kernel source code difference reported by DepSurf. We

show the number (#) in each version, and the percentage added (+),
removed (−) and changed (Δ) between versions. Bar length is pro-

portional to the percentage, normalized to the column’s maximum.

4.1 Kernel Source Code

To analyze the effect of kernel source code changes on the

dependency surface, we examine 17 kernel versions spanning

8 years, from v4.4 to v6.8 (Ubuntu 16.04 to 24.04).We focus on

three types of constructs: functions, structs, and tracepoints.

Kernel Functions. eBPF programs can attach to kernel

functions via kprobes, reading their arguments and return

value. We analyze the addition, removal, and changes of ker-

nel functions, as shown in the first column group in Table 3.

Additions and removals. The Linux kernel has over 35k func-

tions, with the number increasing by roughly 1k to 4k every

six months, as shown by the first “#” column in Table 3. The

“+%” and “−%” columns show the percentage of functions

removed or added from one version to the next (e.g., 7% of

existing functions are removed when updating to v4.15, and

24% more functions are added). One example of function

addition/removal is the introduction of the folio concept

(49f8275 in v5.16) to efficiently represent contiguous pages,

renaming hundreds of functions [172]. Absence of a function

results in an attachment error.

Changes. Function signature changes are slightly lower than

function additions and removals, ranging from 1% to 2% be-

tween each regular release, and 5% on average across LTS

versions. Since eBPF programs attached to kprobes read func-

tion arguments from registers, and manually cast them to the

expected types (e.g., line 4 in Listing 1), function signature

changes do not result in an explicit type error. Instead, they

cause silent stray reads, leading to incorrect results. Listing 3

28

https://github.com/torvalds/linux/commit/49f8275c7d9247cf1dd4440fc8162f784252c849

Linux Kernel Version

4.4 - 4.15 4.15 - 5.4 5.4 - 5.15 5.15 - 6.8

F
u
n
c
t
i
o
n

No. changed 2.0k 1.8k 2.2k 3.0k

- Param added 57% 53% 60% 51%

- Param removed 41% 36% 44% 48%

- Param reordered 19% 19% 25% 19%

- Param type changed 26% 23% 26% 25%

- Return type changed 15% 21% 13% 17%

S
t
r
u
c
t

No. changed 1.1k 1.1k 1.3k 1.5k

- Field added 72% 74% 75% 74%

- Field removed 41% 40% 40% 42%

- Field type changed 37% 34% 32% 34%

T
r
a
c
e
p
t

No. changed 39 54 119 115

- Event changed 95% 81% 86% 92%

- Func changed 46% 54% 32% 51%

Table 4. Breakdown of kernel source code changes.

1 int f(int a, double b); // original
2 int f(int a, double b, int c); // parameter added
3 int f(int a); // parameter removed
4 int f(double b, int a); // parameter reordered
5 int f(int a, int b); // parameter type changed
6 double f(int a, double b); // return type changed

Listing 3. Examples of function signature changes.

shows examples of function signature changes, with their

frequencies shown in Table 4.

First, parameter addition and removal (lines 2, 3) are the

most common, occurring for about 50% and 40% of all func-

tion changes across LTS versions. As an example, vfs_rename

was changed from taking 6 arguments to a single renamedata

struct in 9fe6145: an eBPF program written assuming the first

signature will, for example, fail to read the inode number

from the first argument, and instead read random data.

Second, changes to parameter type or return type (lines

5, 6) are less common, accounting for about 25% and 15%

of all function changes, respectively. Such type changes

usually imply a semantic change. For example, in 18b43a9,

account_idle_timewas changed from taking cputime_t (rep-

resenting time in jiffies) to u64 in nanoseconds.

Third, reordering of parameters (line 4) is less common,

accounting for about 20% of all changes; in this case, only

the indexes of an argument are changed. For example, in

the case where an argument is inserted at the beginning

of vfs_create in 6521f89, the original four arguments are

considered as reordered.

Takeaway 3: Function signature changes are common, caus-

ing eBPF programs to silently read wrong data.

Special Kernel Functions. In addition to regular functions,

we discuss two special kinds of kernel functions that enable

eBPF programs to change kernel behavior.

LSM Hooks. Linux SecurityModule (LSM) hooks serve as se-

curity checkpoints in the kernel, invoked to determine if spe-

cific operations are permitted [61]. eBPF programs attached

to LSM hooks can control kernel behavior by their return val-

ues. This powerful feature can be used to implement security

policies or patch security vulnerabilities [29, 94, 105, 106]. De-

spite their significance, LSM hooks are not stable [146, 151],

a fact even overlooked by some kernel developers [108, 142].

The Linux kernel contains over 150 LSMhooks; on average,

9% of LSM hooks are added and 2% removed across each LTS

version. Usually, a hook is removed because it is no longer

needed or has been replaced by another hook (e.g., 3cf2993,

da2441f). Changes to an LSM hook’s signature have serious

security implications. For example, stray reads can cause a

program to mistakenly allow denied operations.

Kfuncs. Similar to eBPF helper functions, kfuncs are kernel

functions callable from eBPF programs, but they lack a stable

interface [55]. There are around 100 kfuncs in v6.8. We did

not observe any kfuncs changing signature in the kernels we

studied, but some kfuncs have been removed (e.g., f85671c,

6499fe6) or renamed (e.g., d2dcc67). Kfuncs are registered to

the verifier, so programs misusing them will be rejected.

Kernel Structures. eBPF programs invoke helper functions

provided by the kernel, such as bpf_probe_read, to read ker-

nel structures (e.g., line 5 in Listing 1). We show the numbers

of addition, removal, and changes of kernel structures in

Table 3, and breakdown the changes in Table 4.

Additions and removals. The Linux kernel contains a large

number of defined structures: between 6k and 10k per kernel

version. As expected, the number of structures in the kernel

increases over time. Table 3 shows that while the absolute

number of structures is significantly less than the number

of functions in the kernel, the percentages that are added

or deleted over time are relatively similar to one another:

about 20% structs are added and 5% removed across each

LTS version. For example, the renaming from compat_time to

old_time32 in 9afc5ee adds and removes 3 structs. If a struct is

used by an eBPF program, but absent in the kernel, the eBPF

program will fail to compile, or a once-compiled program

will fail to load with a relocation error.

Changes. Struct fields can be added or removed, accounting

for around 60% and 35% of the field changes, respectively. As

an example, task_struct’s long state field was changed to

unsigned int __state in 2f064a5with a later commit (5616e89)

fixing an in-tree eBPF program. The absence of fields leads

to the same compilation errors or relocation errors. The

type of a field in a struct can also be changed, accounting for

about 30% of all struct changes. For example, the change from

cputime_t to u64 affects many structs in the kernel, including

the utime field in task_struct in 5613fda. If the changed type

is not compatible with the original type, a compilation error

or relocation error will be reported. Otherwise, the old type

will be used, risking reading wrong data.

Takeaway 4: Most struct changes are detectable by compil-

ers, but compatible type changes can cause silent errors.

29

https://github.com/torvalds/linux/commit/9fe61450972d3900bffb1dc26a17ebb9cdd92db2
https://github.com/torvalds/linux/commit/18b43a9bd7ae91185e398dd983fb4fffb9e81b3a
https://github.com/torvalds/linux/commit/6521f89
https://github.com/torvalds/linux/commit/3cf29931453215536916d0c4da953fce1911ced3
https://github.com/torvalds/linux/commit/da2441fdffbf7602da702aea5bd95ca4dc3d63fc
https://github.com/torvalds/linux/commit/f85671c6ef46d490a90dac719e0c0e0adbacfd9b
https://github.com/torvalds/linux/commit/6499fe6edc4fd5b91aed4d5cd84bd113e1c58d5f
https://github.com/torvalds/linux/commit/d2dcc67df910dd85253a701b6a5b747f955d28f5
https://github.com/torvalds/linux/commit/9afc5eee65ca7d717a99d6fe8f4adfe32a40940a
https://github.com/torvalds/linux/commit/2f064a59a11ff9bc22e52e9678bc601404c7cb34
https://github.com/torvalds/linux/commit/5616e895ecc56db8ba959e53638031a21353e0e2
https://github.com/torvalds/linux/commit/5613fda9a503cd6137b120298902a34a1386b2c1

Tracepoints. A tracepoint is a static instrumentation point

in the Linux kernel that allows the kernel to record events.

Tracepoints are desired (and sometimes assumed) to be stable

by users, but as we will show, addition, removal, and changes

are still surprisingly common.

Additions and removals. Table 3 shows that there are over

500 tracepoints, orders of magnitude fewer than the number

of functions or structures. As the kernel evolves, tracepoints

need to evolve as well. Across each LTS version, approxi-

mately 25% new tracepoints are added while 4% are removed.

However, tracepoints are sometimes added or removed un-

necessarily. For example, 11e9734 removed the original trace-

point kmem_alloc and renamed kmem_alloc_node to take its

place because “maintaining both does not make sense” even

though the change “will break some tools” [84]. This deci-

sion contradicts the longstanding principle of not breaking

userspace, highlighting the tension between kernel evolution

and maintaining backward compatibility.

Changes. Table 3 shows that about 8% to 16% of tracepoints

are changed across each LTS version. To better understand

these changes, we need to delve into the two key components

of a tracepoint: the event struct and the tracing function.

When the tracing function is called in the kernel, it generates

an event struct, which is then passed to eBPF programs

attached as an argument. Alternatively, eBPF programs can

directly attach to the tracing function itself, a method known

as raw tracepoint, to bypass the event struct generation.

It has been made clear in the mailing list that the tracing

functions are not stable [139].

Table 4 breaks down the tracepoint changes. Most tra-

cepoint changes, ranging from 81% to 95%, include event

struct changes. For example, the trace event for itimer_state

used to have one field, value_usec, which was changed to

value_nsec in bd40a17. About 45% of tracepoint changes in-

clude changes in the tracing function, significantly lower

than the trace event changes, despite not being promised to

be stable. For example, a54895f removed the first argument

of block_rq_issue, requiring multiple tools to be updated to

work with the new kernel [133, 134].

Takeaway 5: Tracepoints are not as stable as presumed.

4.2 Kernel Configuration

Before the source code is compiled into a binary, the kernel

is configured with a set of options. To understand the impact

of the configuration options on the dependency surfaces,

we compare Linux v5.4 with x86 architecture and generic

flavor to 4 other architectures (arm64, arm32, ppc, riscv) and

4 flavors (low-latency, AWS, Azure, GCP).

Table 5 shows the number of configuration options in

each (8.8k options in x86) and the impact on different ker-

nel constructs. The configuration options differ significantly

across architectures, whereas the low-latency flavor is al-

most identical to the generic flavor (except for minor tweaks

def- Architecture Flavor

ault arm64 arm32 ppc riscv AWS Azure GCP low-lat

Config # 8.8k 9.6k 9.6k 8.1k 7.6k 6.4k 5.3k 8.6k 8.8k

Func

48.0k 49.4k 48.8k 42.8k 36.6k 46.5k 45.5k 48.1k 48.0k

+ - 9.2k 12.6k 5.4k 2.1k 328 992 450 57

− - 7.9k 11.8k 10.6k 13.5k 1.8k 3.5k 319 41

Δ - 120 106 137 101 2 10 1 -

Struct

8.4k 9.1k 8.6k 7.4k 6.6k 8.0k 7.8k 8.4k 8.4k

+ - 1.7k 2.0k 570 157 83 257 68 4

− - 1.0k 1.9k 1.6k 2.0k 483 833 123 1

Δ - 81 154 116 98 19 28 14 5

Tracept

752 685 690 648 625 747 739 752 752

+ - 45 70 25 - 4 26 - -

− - 112 132 129 127 9 39 - -

Δ - - - - - - - - -

Native

Syscall

333 291 378 347 280 333 333 333 333

+ - 2 74 23 2 - - - -

− - 44 29 9 55 - - - -

RegisterΔ - Yes Yes Yes Yes - - - -

Table 5. Configuration differences compared to generic x86 kernel

for v5.4. Bar length normalized to the maximum for each row group.

for the scheduler and timer); the AWS and Azure flavors

aggressively remove device drivers not needed in the cloud.

The configuration options change the dependency sur-

faces of the kernel by conditionally compiling different parts

of the kernel. The presence of a function depends heavily

on the configuration options. However, function signatures

are rarely changed since different configurations provide

different implementations for the same function definition.

A tiny fraction of structs are changed between architectures

and flavors. For example, task_struct, having more than 80

#ifdefs, is often changed. Configuration also affects the pres-

ence of tracepoints, but no tracepoints changes are observed.

Takeaway 6: Configuration mainly influences the presence

of kernel constructs, but rarely changes the definitions.

System Call. The support for system calls varies across

architectures. Our analysis focuses on two critical aspects of

system calls: the availability of architecture-native system

calls and the traceability of 32-bit compatible system calls.

Availability. Table 5 shows that the availability of native

system calls varies across architectures. Notably, the arm64

architecture lacks 44 system calls that are present in x86.

Newer architectures are designed to exclude redundant sys-

tem calls when better alternatives are available. For example,

open and chmod are replaced by their *at counterparts, and

[v]fork by clone. Blindly attaching to these system calls will

cause attachment error.

Traceability. While most 64-bit architectures support 32-bit

system calls for backward compatibility, tracing these calls

presents a significant challenge. Many architectures, includ-

ing x86, arm64, and riscv, lack native tracing support for

these 32-bit system calls. This creates a critical blind spot in

30

https://github.com/torvalds/linux/commit/11e9734bcb6a7361943f993eba4e97f5812120d8
https://github.com/torvalds/linux/commit/bd40a175769d411b2a37e1c087082ac7ee2c15bb
https://github.com/torvalds/linux/commit/a54895fa057c67700270777f7661d8d3c7fda88a

1 // File: fs/sync.c
2 int vfs_fsync() { /* logic */ } // func definition
3 long sys_fsync() { vfs_fsync(); } // inlined call site
4 // File: fs/aio.c
5 int vfs_fsync(); // func declaration
6 void aio_fsync_work() { vfs_fsync(); } // regular call site

Listing 4. Example of selective inline in Linux kernel.

4.4 4.84.1
0
4.1

3
4.1

5
4.1

8 5.0 5.3 5.4 5.85.1
1
5.1

3
5.1

5
5.1

9 6.2 6.5 6.8

Linux Kernel Version

0%

50%

100%

Pc
t.

of
 Fu

nc
tio

ns

arm
64
arm

32 pp
c
ris

cv

Arch for v5.4

Not inlined Fully inlined Selectively inlined

Figure 5. Percentages of functions fully and selectively inlined.

system monitoring and security enforcement. Consequently,

a malicious program can deliberately use 32-bit system calls

to evade detection.

Register Layout. eBPF programs using kprobes access

function arguments through the architecture-specific struct

pt_regs (e.g., line 4 in Listing 1). For example, the first argu-

ment is accessed with ctx->di on x86, but ctx->regs[0] on

arm64. Macros like PT_REGS_*were introduced to abstract the

register access, improving portability. Unfortunately, CO-RE

is not compatible with macros, causing a relocation error if

the eBPF program runs on an architecture other than the

one it was compiled for.

4.3 Kernel Compilation

The compilation process adds another layer of complexity

to the functions in the dependency surfaces. We analyze the

impact of function inline, transformation, duplication, and

name collisions on kernel images across 14 GCC versions,

17 kernel versions, and 5 architectures.

Function Inline. Compiler optimization performs inline by

copying the function body to the call site. It causes two issues

for eBPF programs: if the function is fully inlined, it cannot
be attached by eBPF programs as the function is absent in

the symbol table; if the function is selectively inlined at some

but not all call sites, eBPF programs attached to the function

will only be invoked at the non-inlined call sites.

Full inline. The compiler can fully inline a function when all

these conditions are met: (1) the function is marked as static,

(2) the address of the function is not taken, (3) the function

definition is visible to the compiler, and (4) the function size

is within the inline threshold. The compiler has discretion

over inline decisions, regardless of the inline keyword.

Selective inline. Over 3k kernel functions are selectively in-

lined. Listing 4 shows an example of selective inline in the

Linux kernel. Lines 1 to 3 show that vfs_fsync is called by

sys_fsync within the same file, and is inlined by the com-

piler. However, for other call sites such as aio_fsync_work,

the compiler only sees the function declaration of vfs_fsync,

1 int f (int a, int* b) { return a + *b; }
2 int f.constprop.0 (int* b) { return 1 + *b; }
3 int f.constprop.0.isra.0(int b) { return 1 + b; }

Listing 5. Example of function f transformed by compiler.

4.4
 / 5

.3

4.8
 / 6

.2

4.1
0 /

 6.
3

4.1
3 /

 7.
2

4.1
5 /

 7.
3

4.1
8 /

 8.
2

5.0
 / 8

.3

5.3
 / 9

.2

5.4
 / 9

.3

5.8
 / 1

0.2

5.1
1 /

 10
.3

5.1
3 /

 11
.2

5.1
5 /

 11
.2

5.1
9 /

 12
.2

6.2
 / 1

2.2

6.5
 / 1

3.2

6.8
 / 1

3.2

Linux Kernel Version / GCC Version

0

4k

8k

No
. o

f F
un

ct
io

ns

4 4 4 4 4
8 8

12
10 11 11 10

16 16

12 12 13

arm
64
arm

32 pp
c
ris

cv

Arch for v5.4
(GCC 9.3)

4 3 4 4

isra constprop part cold ≥2

Figure 6. Function transformation. The percentages are labeled on

the top of the bars. ≥2 denotes functions transformed by 2 or more

optimizations.

and cannot inline the function (lines 4-6). If an eBPF pro-

gram attaches to vfs_fsync, the attachment will succeed, but

miss inlined call sites issued by the system calls, leading to

incorrect behavior. Determining if a function is selectively

inlined is difficult, requiring examination of the assembly

code at each call site.

Figure 5 shows that, across the kernel versions and ar-

chitectures, 32% to 36% of functions are fully inlined, 9%

to 11% of functions are selectively inlined; the variation is

permanent, but not in a high percentage (4% and 2%). There

is no guarantee that the same inline decision will be made

across different compiler versions, optimization flags, kernel

versions, or configurations.

Takeaway 7: Selective inline is surprisingly common, caus-

ing silent error with deceptive data.

Function Transformation. Compiler optimizations can

also transform function signatures and names, causing eBPF

programs to fail to attach and read the correct arguments.

For example, in line 2 of Listing 5, interprocedural constant

propagation [19, 67, 170] replaces argument awith a constant

and adds suffix constprop to the function name. In line 3,

interprocedural scalar replacement of aggregates (ISRA) [66,

170] changes argument type from int* to int and adds suffix

isra. Other transformations include function splitting (with

suffix part), and hot/cold function partitioning (with cold).

Figure 6 shows that up to 16% of functions in the symbol

table are transformed by the compiler, depending on the

compiler version and optimization flags. For example, due to

default optimizations in GCC 8 (and thus in Linux 4.18 with

GCC 8.2), functions with cold appear; arm32 does not have

any function with isra since it is disabled in a077224.

Function transformation can be detected when an attach-

ment fails, and a function with a suffix is in the symbol table.

However, the compiler does not expose how the function

arguments are changed, making it difficult to read the correct

arguments in the eBPF programs.

31

https://github.com/torvalds/linux/commit/a077224fd35b2f7fbc93f14cf67074fc792fbac2

Linux Kernel Version

4.4 4.15 5.4 5.15 6.8

Unique Global 17.2k 20.1k 22.7k 26.6k 31.5k

Unique Static 35.7k 41.7k 48.2k 53.3k 60.2k

Static Duplication 4.0k 4.8k 5.5k 6.2k 7.4k

Static-Static Collision 404 398 411 444 498

Static-Global Collision 10 26 27 26 29

Table 6. Function duplication and name collision.

Functions with the Same Name. During the compilation

process, the linker enforces unique names for global func-

tions, but not for static ones. Meanwhile, static functions

also end up in the symbol table, leading to ambiguity in iden-

tifying the correct function for eBPF programs to attach to.

We categorize the issue into two cases:

Function duplication. When a static function is defined in

a header file, the same function is duplicated in every file

that includes that header. Table 6 shows there are up to 7k of

these cases. For example, get_order defined in include/asm-

generic/getorder.h is included in 1125 files in v5.4. Attach-

ing to only the first function causes some invocations to be

missed by eBPF programs, but naively attaching to all also

causes problems, as described next.

Name collision. There are about 400 cases where a static

function shares the same name as another static function

and 20 cases with a global one. In some cases, the functions

serve similar purposes; for example, destroy_inodecache is

defined by 16 different filesystems. In other cases, two un-

related functions happen to share the same name; for ex-

ample, do_readahead is defined with different signatures in

fs/jbd2/recovery.c and mm/readahead.c. Attaching to all these

unrelated functions is unlikely to be the correct behavior.

5 Dependency Set Analysis

We use DepSurf to perform dependency set analysis on 53

eBPF programs from BCC [75] and Tracee [143]. BCC [75]

is a well-known project for Linux kernel observability and

is used in production by major companies [74]. These pro-

grams are specialized to monitor a specific kernel subsystem,

including CPU and processes (15), memory (5), storage (18),

and network (11). Tracee [143] is a more complex program

that uses eBPF for runtime security. It monitors various ker-

nel subsystems, including storage and network, to detect

security threats.

Dependency Set. The Σ columns in Table 7 show the to-

tal number of dependencies for each program. For example,

Tracee depends on 67 functions, 99 structs, 254 fields, 13 tra-

cepoints, and 446 system calls. Table 8 shows a summary for

all 53 analyzed programs; the Σ rows reveal diverse depen-

dency types across the programs: 25 programs (47%) depend

on functions; 42 programs (79%) rely on structs and fields;

25 (47%) are attached to tracepoints; and 8 of them (15%)

interact with system calls. Only 11 programs do not depend

on any structs or fields (e.g., vfsstat), simply monitoring the

Program

Function Struct Field Tracept Syscall

Σ ∅ Δ F S T D Σ ∅ Σ ∅ Δ Σ ∅ Δ Σ ∅

Tracee 67 14 16 5 14 14 2 98 14 250 53 9 13 3 4 446 202

klockstat 14 3 - - 4 - - - - - - - - - - - -

vfsstat 8 - 5 - 6 1 - - - - - - - - - - -

biotop 5 2 2 3 2 - - 3 - 7 2 1 2 2 - - -

cachestat 5 2 2 - 1 - - - - - - - 2 2 1 - -

fsdist 5 2 1 - 2 2 - - - - - - - - - - -

tcptracer 5 - 1 - - 3 - 6 - 14 - - - - - - -

readahead 4 3 1 2 3 1 1 2 1 1 1 - - - - - -

fsslower 4 1 - - 2 1 - 5 - 6 - - - - - - -

filelife 4 - 3 - 2 - - 5 1 6 2 - - - - - -

biostacks 3 1 2 2 3 - - 3 - 5 2 - 2 2 - - -

tcpconnlat 3 - - - - 2 - 4 1 11 1 - 1 1 1 - -

numamove 2 2 - 1 - - - - - - - - - - - - -

biosnoop 2 1 1 1 2 - - 3 - 9 2 1 4 1 3 - -

filetop 2 - - - 2 - - 6 - 10 - - - - - - -

tcpsynbl 2 - - - - 2 - 1 - 2 - - - - - - -

tcpconnect 2 - - - - 1 - 3 - 8 - - - - - - -

bindsnoop 2 - - - - - - 5 - 14 4 1 - - - - -

tcptop 2 - - - - - - 3 - 9 - - - - - - -

oomkill 1 - 1 - 1 1 - 3 1 4 2 - - - - - -

capable 1 - 1 - 1 1 - - - - - - - - - - -

tcprtt 1 - 1 - - 1 - 6 - 12 - - - - - - -

mdflush 1 - 1 - - 1 - 3 - 4 2 - - - - - -

solisten 1 - - - - 1 - 5 - 8 - - - - - - -

slabratetop 1 - - - - - - 1 - 2 - 1 - - - - -

memleak - - - - - - - 11 9 17 14 - 10 4 7 - -

tcppktlat - - - - - - - 7 1 12 - - 3 3 3 - -

mountsnoop - - - - - - - 7 1 6 - - - - - 2 -

runqlat - - - - - - - 5 - 11 3 1 3 - 3 - -

tcpstates - - - - - - - 4 1 13 7 1 1 1 1 - -

runqlen - - - - - - - 4 - 5 - - - - - - -

biolatency - - - - - - - 3 - 7 2 1 3 - 3 - -

bitesize - - - - - - - 3 - 6 2 - 1 - 1 - -

sigsnoop - - - - - - - 3 - 5 - - 1 - 1 3 -

execsnoop - - - - - - - 3 - 4 - - - - - 1 -

biopattern - - - - - - - 2 2 6 6 - 1 - 1 - -

tcplife - - - - - - - 2 1 12 10 1 1 1 1 - -

syscount - - - - - - - 2 - 4 - - 2 - - - -

statsnoop - - - - - - - 2 - 2 - - - - - 5 4

opensnoop - - - - - - - 2 - 2 - - - - - 2 1

futexctn - - - - - - - 2 - 2 - - - - - 1 -

profile - - - - - - - 1 1 1 1 1 - - - - -

llcstat - - - - - - - 1 1 1 1 - - - - - -

offcputime - - - - - - - 1 - 6 2 - 1 - 1 - -

runqslower - - - - - - - 1 - 5 2 - 3 - 3 - -

cpudist - - - - - - - 1 - 5 2 - 1 - 1 - -

wakeuptime - - - - - - - 1 - 4 - - 2 - 2 - -

exitsnoop - - - - - - - 1 - 4 - - 1 - - - -

hardirqs - - - - - - - 1 - 1 - - 2 - - - -

drsnoop - - - - - - - - - - - - 2 - 1 - -

softirqs - - - - - - - - - - - - 2 - - - -

cpufreq - - - - - - - - - - - - 1 - - - -

syncsnoop - - - - - - - - - - - - - - - 6 1

Table 7. Dependency set analysis of 53 eBPF programs. For each

program, we show the total number of dependencies (Σ) and the

number of dependencies with mismatches, including absence (∅),
change (Δ), full inline (F), selective inline (S), transformation (T),

and duplication (D). Tools free of mismatches are highlighted in

blue.

32

Programs # Uniq Deps Reported Issue No.

Func

Σ 25 126 -

∅ 10 29 3687, 3695, 3692, 3747, 4337, 4885

Δ 14 31 1911, 3360, 4339, 4340, 4346

F 6 11 4261, 4478, 4638, 4700, 5115

S 14 32 703, 1667, 2252, 2373, 3913

T 14 28 1754, 3293, 3339, 3315, 4937

D 2 3 -

Struct

Σ 43 135 -

∅ 13 31 4340, 4339

Field

Σ 43 342 -

∅ 22 102

1384, 3612, 3647, 3650, 3658, 3672

3680, 3859, 3903, 3926, 3936

Δ 10 13 3845, 3865

Tracept

Σ 25 44 -

∅ 10 15 1636, 2816, 4384

Δ 18 23 3317, 3338, 4076, 4476

Syscall

Σ 8 448 -

∅ 4 204 3012, 3668, 3843, 4287

Table 8. Summary of Table 7. For each type of construct, we show

the numbers of programs and unique dependencies for the construct

(Σ), and those affected by absence (∅), change (Δ), full inline (F),
selective inline (S), transformation (T), and duplication (D). We also

list the GitHub issue numbers that manifest the mismatches.

number of invocations. In total, they depend on 126 unique

functions, 134 structs, 345 fields, 44 tracepoints, and 448 sys-

tem calls, with most of the system calls used by Tracee. We

observe that although an equal number of programs attach to

tracepoints and functions, the number of unique tracepoints

used (44) is much less than that of functions (126).

Takeaway 8: eBPF programs exhibit diverse dependency

sets.

Dependency Mismatches. For each dependency used by

the program, we examine dependency mismatches across

21 kernel images as used in Figure 4. Our analysis reveals

that only 9 of the programs (highlighted in blue in Table 7)

are free from mismatches across all kernel images; notably,

these tools generally have simpler functionality. For the mis-

matches found by DepSurf, we further cross-referenced the

GitHub issues reported to the BCC project (shown in Table 8),

providing concrete examples of real-world dependency mis-

matches encountered by developers.

Table 8 shows the summary of dependency mismatches

with the 53 eBPF programs we analyzed. Of the 25 programs

that depend on functions, 3 main types of mismatches affect

14 programs each: seletive inline, leading to incomplete re-

sults; signature changes, causing incorrect results; and com-

piler transformation, resulting in attachment errors. Among

the 42 programs that depend on structs or fields, the most

common mismatches are their absence, which causes compi-

lation errors. For the 25 programs that depend on tracepoints,

changes to tracepoints affect 18 programs. 8 programs de-

pend on 448 unique system calls with about half of them

unavailable on some kernel images, affecting 4 programs.

Takeaway 9: Dependency mismatches are widespread in

eBPF programs, requiring continuous maintenance efforts.

6 Discussion

We now examine the challenges and potential solutions for

dependency mismatches, followed by our limitations.

Inherent Challenges. The fundamental challenges of de-

pendency mismatches stem from the unstable nature of

Linux kernel internals. As evolution of the kernel internals

is inevitable, eBPF programs that depend on them should

evolve as well. It is extremely challenging for any tool to au-

tomatically adapt to arbitrary changes to the kernel internals

– some manual effort is always necessary.

DepSurf helps reduce this maintenance burden by provid-

ing a systematic approach to detect and analyze dependency

mismatches. We believe that our work represents an im-

portant first step towards a more stable eBPF ecosystem

by raising awareness and demonstrating the importance of

dependency mismatches in the community.

While solutions to the dependency mismatches are not the

focus of our contribution, here we discuss some possibilities:

Stable tracepoints. The kernel developers can establish and

maintain a set of stable tracepoints. eBPF developers using

these tracepoints can be confident that their programs will

continue to work with new kernels. This topic has been

discussed in the kernel community for years [34–39], but no

concrete proposal has been made.

Compatibility layer. The eBPF community can collectively

develop a compatibility layer to provide a stable API over the

changing kernel internals. This would help eBPF programs re-

main functional across kernels while reducing maintenance

burden on individual developers. A similar effort has been

made for probes in DTrace [20, 79].

Technical Challenges. Some of the challenges we identi-

fied are technical and can be addressed through improved

tooling and infrastructure.

Function inline. Compilers emit a debug entry for every

inlined function, containing information about its name, ad-

dress, and parameter locations [31, 32]. We leverage this

data to implement a proof-of-concept solution [182] that en-

ables tracing of inlined functions. It identifies all inlined call

sites of a target function and attaches kprobes both to these

inlined locations (within the caller’s body) and to the origi-

nal function. Since inlined functions do not follow standard

calling conventions, special handling is needed to correctly

access function arguments at each call site. The kernel com-

munity are also exploring to encode call-site information

into the BTF Type Format (BTF) to better handle these inline

cases with CO-RE [109, 150].

Function transformation. Compilers currently provide only

basic information about function transformations through

name suffixes. We suggest that compilers should emit more

comprehensive debug information detailing how functions

33

https://github.com/iovisor/bcc/issues/3687
https://github.com/iovisor/bcc/issues/3695
https://github.com/iovisor/bcc/issues/3692
https://github.com/iovisor/bcc/issues/3747
https://github.com/iovisor/bcc/issues/4337
https://github.com/iovisor/bcc/issues/4885
https://github.com/iovisor/bcc/issues/1911
https://github.com/iovisor/bcc/issues/3360
https://github.com/iovisor/bcc/issues/4339
https://github.com/iovisor/bcc/issues/4340
https://github.com/iovisor/bcc/issues/4346
https://github.com/iovisor/bcc/issues/4261
https://github.com/iovisor/bcc/issues/4478
https://github.com/iovisor/bcc/issues/4638
https://github.com/iovisor/bcc/issues/4700
https://github.com/iovisor/bcc/issues/5115
https://github.com/iovisor/bcc/issues/703
https://github.com/iovisor/bcc/issues/1667
https://github.com/iovisor/bcc/issues/2252
https://github.com/iovisor/bcc/issues/2373
https://github.com/iovisor/bcc/issues/3913
https://github.com/iovisor/bcc/issues/1754
https://github.com/iovisor/bcc/issues/3293
https://github.com/iovisor/bcc/issues/3339
https://github.com/iovisor/bcc/issues/3315
https://github.com/iovisor/bcc/issues/4937
https://github.com/iovisor/bcc/issues/4340
https://github.com/iovisor/bcc/issues/4339
https://github.com/iovisor/bcc/issues/1384
https://github.com/iovisor/bcc/issues/3612
https://github.com/iovisor/bcc/issues/3647
https://github.com/iovisor/bcc/issues/3650
https://github.com/iovisor/bcc/issues/3658
https://github.com/iovisor/bcc/issues/3672
https://github.com/iovisor/bcc/issues/3680
https://github.com/iovisor/bcc/issues/3859
https://github.com/iovisor/bcc/issues/3903
https://github.com/iovisor/bcc/issues/3926
https://github.com/iovisor/bcc/issues/3936
https://github.com/iovisor/bcc/issues/3845
https://github.com/iovisor/bcc/issues/3865
https://github.com/iovisor/bcc/issues/1636
https://github.com/iovisor/bcc/issues/2816
https://github.com/iovisor/bcc/issues/4384
https://github.com/iovisor/bcc/issues/3317
https://github.com/iovisor/bcc/issues/3338
https://github.com/iovisor/bcc/issues/4076
https://github.com/iovisor/bcc/issues/4476
https://github.com/iovisor/bcc/issues/3012
https://github.com/iovisor/bcc/issues/3668
https://github.com/iovisor/bcc/issues/3843
https://github.com/iovisor/bcc/issues/4287

are transformed. This would enable the eBPF infrastruc-

ture to better understand and handle these transformations.

While there have been initial efforts to encode transformed

functions without parameter changes in BTF [110], full sup-

port requires additional information from the compiler.

Functions with the same name. Prior to Linux v6.6 (b022f0c),

when there are multiple functions with the same name, an

eBPF program is attached to the first one found in the symbol

table, which are likely not the intention. The commit changed

this behavior to return an error [161]. However, handling the

error case effectively requires additional information from

the kernel. Several patches have been proposed to address

this issue by disambiguating functions using the module and

filename [5], a random number [22], or the filename and line

number [23], but none have been accepted.

Type checking. To avoid stray reads, we suggest having a

standardized mechanism for eBPF programs to explicitly

declare the expected type of kernel constructs. This would

allow better type checking and avoid silent incorrect results.

BTF-enabled eBPF programs represent one step in this di-

rection by tracking and inferring the types on the kernel

side [40, 118, 152]. However, this does not work for kprobes,

which rely on untyped register values read from struct

pt_regs and untyped pointer passed to bpf_probe_read.

Limitations. DepSurf does not understand the semantics

of kernel constructs. Supporting semantic differences is no-

tably challenging considering the kernel’s vast codebase and

complexity. In addition, our study is comprehensive but not

guaranteed to be complete. Covering all combinations that

can possibly change the dependency surfaces is impractical.

Finally, the data collection of DepSurf relies on the relevant

information being accurately exposed in the kernel images

and eBPF programs. We believe that DepSurf can encourage

the standardization of exposing this data, which is orthogo-

nal to our work.

7 Related Work

eBPF Portability. CO-RE (Compile Once, Run Everywhere)

enables compiled eBPF programs to run across different ker-

nels [72, 118, 119]. Naively running a compiled eBPF pro-

gram on a different kernel does not work because the layout

of kernel data structures used by the eBPF program can

be different. CO-RE addresses this by generating relocation

records during compilation of eBPF programs to track which

struct fields are accessed [56]. At load time, CO-RE queries

the running kernel’s type information in BPF Type Format

(BTF) [59] to determine the actual field offsets in that kernel

version. It then automatically adjusts the program’s field

accesses to use the correct offsets for the target kernel. How-

ever, relocation does not work if recompiling the source code

would have failed on the target kernel (e.g., struct missing).

The eBPF instruction set architecture (ISA) [159] and the

format of object files [158] are also being standardized. Our

work is complementary because the vast number of kernel

constructs continue to evolve and are unlikely to be stable.

eBPF Applications. Researchers have explored the use

of eBPF across diverse domains: optimizing performance

for storage systems [12, 177, 183], distributed protocols [8,

173, 184, 185], server softwares [15, 69], and cloud-native

platforms [136]; supporting in-network and on-device packet

processing and monitoring [7, 13, 14, 113, 145]; custumizing

kernel behavior [21, 89, 92, 166, 186, 187]. We believe that

DepSurf will be even more beneficial as the usage scenarios

of eBPF increase.

eBPF Enhancements. The reliability of eBPF programs has

been explored from various aspects: the verifier [11, 71, 83,

116, 141, 148, 154, 155, 169], the just-in-time compilers [91,

122, 175], helper functions [88], and security [90, 102, 103,

107]. Recent works have optimized eBPF performance [98,

111] and expanded its capabilities [47]. Our work, instead,

focuses on the dependency issues for valid eBPF programs.

Software Dependency. The dependency mismatches of

normal user programs on the OS kernel have been studied [6,

100, 123, 165], focusing on POSIX API usage patterns and

compatibility. General software dependencies have also been

studied in other contexts, such as kernel driver [25], software

failures [24], upgrade failures [180], C/C++ libraries [99, 130,

153], and Java projects [171]. eBPF programs suffer from new

problems due to the broader dependency surfaces.

Linux Evolution. Prior studies have examined various as-

pects of Linux kernel evolution, such as codebase growth [96],

software complexity [86], build system [117], memory man-

agement [82], and performance [137]. DepSurf, to the best

of our knowledge, is the first to analyze how the changed

constructs affect eBPF programs.

8 Conclusion

We present DepSurf, a tool that analyzes kernel images

and eBPF programs to diagnose dependency mismatches.

DepSurf enables the first comprehensive study of the eBPF

dependency issues by analyzing a range of kernel images.We

advocate integrating DepSurf into the eBPF program devel-

opment and maintenance process to improve the portability

of eBPF programs across different kernels.

Acknowledgments

We thank our shepherd, Roberto Natella, and the anonymous

reviewers of EuroSys ’25 for their valuable feedback and

comments. We are grateful to kernel maintainer Yonghong

Song for insightful discussion. This work was supported

by the NSF under award number CNS-2402859. We thank

NetApp, Microsoft, InfluxData, and GE HealthCare for their

generous support. Jing Liu was partially supported by a

Meta PhD Fellowship. We thank the taxpayers of Wisconsin

and the federal government for their support of this work.

Any opinions, findings, conclusions, or recommendations

expressed in this material are those of the authors and may

not reflect the views of NSF or any other institutions.

34

https://github.com/torvalds/linux/commit/b022f0c7e404887a7c5229788fc99eff9f9a80d5

References

[1] sched_ext schedulers and tools. https://github.com/sched-ext/scx.
[2] System V ABI. System V Application Binary Interface AMD64 Ar-

chitecture Processor Supplement. https://refspecs.linuxbase.org/elf/
x86_64-abi-0.99.pdf.

[3] System V ABI. Tool Interface Standard (TIS) Executable and Linking

Format (ELF) Specification. https://refspecs.linuxbase.org/elf/elf.pdf.
[4] Ethan Afantenos. Hash ordering and Hyrum’s Law. https://eaftan.

github.io/hash-ordering/, 2021.
[5] Nick Alcock. [PATCH modules-next v10 00/13] kallsyms: reliable

symbol->address lookup with /proc/kallmodsyms. https://lore.kernel.
org/lkml/20221205163157.269335-1-nick.alcock@oracle.com/, 2022.

[6] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris

Mitropoulos, and Jason Nieh. Posix abstractions in modern operating

systems: The old, the new, and the missing. In Proceedings of the
Eleventh European Conference on Computer Systems, pages 1–17, 2016.

[7] Maximilian Bachl, Joachim Fabini, and Tanja Zseby. A flow-based

ids using machine learning in ebpf. arXiv preprint arXiv:2102.09980,
2021.

[8] Joshua Bardinelli, Yifan Zhang, Jianchang Su, Linpu Huang, Aidan

Parilla, Rachel Jarvi, Sameer G Kulkarni, and Wei Zhang. hydns:

Acceleration of dns through kernel space resolution. In Proceedings
of the ACM SIGCOMM 2024 Workshop on eBPF and Kernel Extensions,
pages 58–64, 2024.

[9] Abenezer Belachew. Hyrum’s Law in Golang. https://abenezer.org/
blog/hyrum-law-in-golang, 2021.

[10] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün

Sirer, Marc E Fiuczynski, David Becker, Craig Chambers, and Susan

Eggers. Extensibility safety and performance in the spin operating

system. In Proceedings of the fifteenth ACM symposium on Operating
systems principles, pages 267–283, 1995.

[11] Sanjit Bhat and Hovav Shacham. Formal verification of the linux

kernel ebpf verifier range analysis, 2022.

[12] Ashish Bijlani and Umakishore Ramachandran. Extension framework

for file systems in user space. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 121–134, 2019.

[13] Marco Bonola, Giacomo Belocchi, Angelo Tulumello, Marco Spaziani

Brunella, Giuseppe Siracusano, Giuseppe Bianchi, and Roberto Bi-

fulco. Faster software packet processing on {FPGA}{NICs} with

{eBPF} program warping. In 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22), pages 987–1004, 2022.

[14] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore

Pontarelli, Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cam-

marano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco.

hxdp: Efficient software packet processing on fpga nics. Communica-
tions of the ACM, 65(8):92–100, 2022.

[15] Matthew Butrovich, Karthik Ramanathan, John Rollinson, Wan Shen

Lim, William Zhang, Justine Sherry, and Andrew Pavlo. Tigger: A

database proxy that bounces with user-bypass. Proceedings of the
VLDB Endowment, 16(11):3335–3348, 2023.

[16] "Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and

Dawson R. Engler". EXE: Automatically Generating Inputs of Death.

CCS ’06’, 2006.

[17] David Calavera and Lorenzo Fontana. Linux Observability with BPF:
Advanced Programming for Performance Analysis and Networking.
O’Reilly Media, 2019.

[18] Calico et al. Calico. https://www.projectcalico.org/.
[19] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torc-

zon. Interprocedural constant propagation. ACM SIGPLAN Notices,
21(7):152–161, 1986.

[20] Bryan Cantrill, MichaelW Shapiro, AdamHLeventhal, et al. Dynamic

instrumentation of production systems. In USENIX Annual Technical
Conference, General Track, pages 15–28, 2004.

[21] Xuechun Cao, Shaurya Patel, Soo Yee Lim, XueyuanHan, and Thomas

Pasquier. {FetchBPF}: Customizable prefetching policies in linux

with {eBPF}. In 2024 USENIX Annual Technical Conference (USENIX
ATC 24), pages 369–378, 2024.

[22] Alessandro Carminati. [PATCH v2] scripts/link-vmlinux.sh: Add

alias to duplicate symbols for kallsyms. https://lore.kernel.org/all/
20230714150326.1152359-1-alessandro.carminati@gmail.com/T/,
2023.

[23] Alessandro Carminati. [PATCH v3] scripts/link-vmlinux.sh: Add

alias to duplicate symbols for kallsyms. https://lore.kernel.org/lkml/
20230828080423.3539686-1-alessandro.carminati@gmail.com/T/#u,
2023.

[24] Marcelo Cataldo, AudrisMockus, JeffreyARoberts, and JamesDHerb-

sleb. Software dependencies, work dependencies, and their impact

on failures. IEEE Transactions on Software Engineering, 35(6):864–878,
2009.

[25] Weiteng Chen, Yu Hao, Zheng Zhang, Xiaochen Zou, Dhilung Kirat,

Shachee Mishra, Douglas Schales, Jiyong Jang, and Zhiyun Qian. Syz-

gen++: Dependency inference for augmenting kernel driver fuzzing.

In IEEE Symposium on Security and Privacy, 2024.
[26] Cilium et al. Cilium. https://cilium.io/.
[27] Cilium et al. Tetragon: eBPF-based Security Observability and Run-

time Enforcement. https://github.com/cilium/tetragon.
[28] Cloudflare. eBPF at Cloudflare. https://blog.cloudflare.com/tag/ebpf/.
[29] Cloudflare. Live-patching security vulnerabilities inside the Linux

kernel with eBPF Linux Security Module. https://blog.cloudflare.com/
live-patch-security-vulnerabilities-with-ebpf-lsm.

[30] cobrien7. libbpf-tools: fix kernel version checks. https://github.com/
iovisor/bcc/commit/312a40de6d72d9969999aed991ae066d383639bb,
2022.

[31] DWARF Standard Committee. DWARF Debugging Information For-

mat Version 4. https://dwarfstd.org/doc/DWARF4.pdf.
[32] DWARF Standard Committee. DWARF Debugging Information For-

mat Version 5. https://dwarfstd.org/doc/DWARF5.pdf.
[33] Jonathan Corbet. Maintainers Summit topics: pull depth, hardware

vulnerabilities, etc. https://lwn.net/Articles/799262/.
[34] Jonathan Corbet. ABI status for tracepoints. https://lwn.net/Articles/

412685/, 2010.
[35] Jonathan Corbet. Statistics and tracepoints. https://lwn.net/Articles/

401769/, 2010.
[36] Jonathan Corbet. Two ABI troubles. https://lwn.net/Articles/408689/,

2010.

[37] Jonathan Corbet. Ftrace, perf, and the tracing ABI. https://lwn.net/
Articles/442113/, 2011.

[38] Jonathan Corbet. Another attempt to address the tracepoint ABI

problem. https://lwn.net/Articles/737530/, 2017.
[39] Jonathan Corbet. Dynamic function tracing events. https://lwn.net/

Articles/747256/, 2018.
[40] Jonathan Corbet. Type checking for BPF tracing. https://lwn.net/

Articles/803258/, 2019.
[41] Jonathan Corbet. Git archive generation meets Hyrum’s law. https:

//lwn.net/Articles/921787/, 2023.
[42] Alban Crequy. Using BPF Iterators to Gain Insight into Ku-

bernetes. https://www.youtube.com/watch?v=ilcYXPDSgu8&list=
PLj6h78yzYM2Pm5nF_GmNQHMyt9CUZr2uQ&index=6.

[43] Deepfence. eBPFGuard: Rust library for writing Linux security poli-

cies using eBPF. https://github.com/deepfence/ebpfguard.
[44] Deepfence. Introducing eBPFGuard: A Library for InlineMitigation of

Threats using LSMHooks. https://www.deepfence.io/blog/ebpfguard-
a-library-for-inline-mitigation-of-threats.

[45] Mugdha Deokar, Jingyang Men, Lucas Castanheira, Ayush Bhardwaj,

and Theophilus A. Benson. An empirical study on the challenges of

ebpf application development. In Proceedings of the ACM SIGCOMM
2024 Workshop on EBPF and Kernel Extensions, eBPF ’24, page 1–8,

35

https://github.com/sched-ext/scx
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/elf.pdf
https://eaftan.github.io/hash-ordering/
https://eaftan.github.io/hash-ordering/
https://lore.kernel.org/lkml/20221205163157.269335-1-nick.alcock@oracle.com/
https://lore.kernel.org/lkml/20221205163157.269335-1-nick.alcock@oracle.com/
https://abenezer.org/blog/hyrum-law-in-golang
https://abenezer.org/blog/hyrum-law-in-golang
https://www.projectcalico.org/
https://lore.kernel.org/all/20230714150326.1152359-1-alessandro.carminati@gmail.com/T/
https://lore.kernel.org/all/20230714150326.1152359-1-alessandro.carminati@gmail.com/T/
https://lore.kernel.org/lkml/20230828080423.3539686-1-alessandro.carminati@gmail.com/T/#u
https://lore.kernel.org/lkml/20230828080423.3539686-1-alessandro.carminati@gmail.com/T/#u
https://cilium.io/
https://github.com/cilium/tetragon
https://blog.cloudflare.com/tag/ebpf/
https://blog.cloudflare.com/live-patch-security-vulnerabilities-with-ebpf-lsm
https://blog.cloudflare.com/live-patch-security-vulnerabilities-with-ebpf-lsm
https://github.com/iovisor/bcc/commit/312a40de6d72d9969999aed991ae066d383639bb
https://github.com/iovisor/bcc/commit/312a40de6d72d9969999aed991ae066d383639bb
https://dwarfstd.org/doc/DWARF4.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://lwn.net/Articles/799262/
https://lwn.net/Articles/412685/
https://lwn.net/Articles/412685/
https://lwn.net/Articles/401769/
https://lwn.net/Articles/401769/
https://lwn.net/Articles/408689/
https://lwn.net/Articles/442113/
https://lwn.net/Articles/442113/
https://lwn.net/Articles/737530/
https://lwn.net/Articles/747256/
https://lwn.net/Articles/747256/
https://lwn.net/Articles/803258/
https://lwn.net/Articles/803258/
https://lwn.net/Articles/921787/
https://lwn.net/Articles/921787/
https://www.youtube.com/watch?v=ilcYXPDSgu8&list=PLj6h78yzYM2Pm5nF_GmNQHMyt9CUZr2uQ&index=6
https://www.youtube.com/watch?v=ilcYXPDSgu8&list=PLj6h78yzYM2Pm5nF_GmNQHMyt9CUZr2uQ&index=6
https://github.com/deepfence/ebpfguard
https://www.deepfence.io/blog/ebpfguard-a-library-for-inline-mitigation-of-threats
https://www.deepfence.io/blog/ebpfguard-a-library-for-inline-mitigation-of-threats

New York, NY, USA, 2024. Association for Computing Machinery.

[46] Peter Druschel, Vivek S Pai, and Willy Zwaenepoel. Extensible ker-

nels are leading os research astray. HOTOS ’97, page 38, USA, 1997.

IEEE Computer Society.

[47] Kumar Kartikeya Dwivedi, Rishabh Iyer, and Sanidhya Kashyap. Fast,

flexible, and practical kernel extensions. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Principles, pages 249–
264, 2024.

[48] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. Exoker-

nel: An operating system architecture for application-level resource

management. ACM SIGOPS Operating Systems Review, 29(5):251–266,
1995.

[49] Facebook. Katran: High-Performance Layer 4 Load Balancing. https:
//github.com/facebookincubator/katran.

[50] Facebook. Open-sourcing Katran: a scalable network load bal-

ancer. https://engineering.fb.com/2018/05/22/open-source/open-
sourcing-katran-a-scalable-network-load-balancer/.

[51] Stanislav Fomichev, Eric Dumazet, , Willem de Bruijn, Vlad Du-

mitrescu, Bill Sommerfeld, and Peter Oskolkov. Replacing HTB

with EDT and BPF. https://netdevconf.info//0x14/session.html?talk-
replacing-HTB-with-EDT-and-BPF.

[52] Linux Foundation. Backporting and conflict resolution. https://www.
kernel.org/doc/html/latest/process/backporting.html.

[53] Linux Foundation. BPF CO-RE (Compile Once - Run Every-

where). https://docs.kernel.org/bpf/libbpf/libbpf_overview.html#bpf-
co-re-compile-once-run-everywhere.

[54] Linux Foundation. BPF Documentation. https://docs.kernel.org/bpf/.
[55] Linux Foundation. BPF Kernel Functions. https://docs.kernel.org/

bpf/kfuncs.html.
[56] Linux Foundation. BPF LLVM Relocations. https://docs.kernel.org/

bpf/llvm_reloc.html.
[57] Linux Foundation. BPF LSM. https://docs.kernel.org/bpf/prog_lsm.

html.
[58] Linux Foundation. BPF Program Types. https://docs.kernel.org/bpf/

libbpf/program_types.html.
[59] Linux Foundation. BPF Type Format (BTF). https://www.kernel.org/

doc/html/next/bpf/btf.html.
[60] Linux Foundation. Kprobes. https://docs.kernel.org/trace/kprobes.

html.
[61] Linux Foundation. Linux Security Modules. https://docs.kernel.org/

security/lsm.html.
[62] Linux Foundation. Tracepoints. https://docs.kernel.org/trace/

tracepoints.html.
[63] Linux Foundation. Uprobe-tracer: Uprobe-based Event Tracing. https:

//docs.kernel.org/trace/uprobetracer.html.
[64] Iago López Galeiras. Add RestrictFileSystems= property using LSM

BPF. https://github.com/systemd/systemd/pull/18145.
[65] Bolaji Gbadamosi, Luigi Leonardi, Tobias Pulls, Toke Høiland-

Jørgensen, Simone Ferlin-Reiter, Simo Sorce, and Anna Brunström.

The ebpf runtime in the linux kernel, 2024.

[66] GCC. GCC Options That Control Optimization. https://gcc.gnu.org/
onlinedocs/gcc/Optimize-Options.html.

[67] GCC. Interprocedural Optimization Passes. https://gcc.gnu.org/
onlinedocs/gccint/IPA-passes.html.

[68] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,

Jorge A Navas, Noam Rinetzky, Leonid Ryzhyk, andMooly Sagiv. Sim-

ple and precise static analysis of untrusted linux kernel extensions.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1069–1084, 2019.

[69] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles

Muller. BMC: Accelerating memcached using safe in-kernel caching

and pre-stack processing. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages 487–501, 2021.

[70] GitHub. Debugging network stalls on Kubernetes. https://github.
blog/2019-11-21-debugging-network-stalls-on-kubernetes/.

[71] Google. Buzzer - An eBPF Fuzzer toolchain. https://github.com/
google/buzzer.

[72] Brendan Gregg. BPF binaries: BTF, CO-RE, and the future of BPF

perf tools. https://www.brendangregg.com/blog/2020-11-04/bpf-co-
re-btf-libbpf.html.

[73] Brendan Gregg. Linux BPF Superpowers. https://www.brendangregg.
com/blog/2016-03-05/linux-bpf-superpowers.html.

[74] Brendan Gregg. BPF Performance Tools. Addison-Wesley Professional,

2019. http://www.brendangregg.com/bpf-performance-tools-book.
html.

[75] Brendan Gregg et al. BCC. https://github.com/iovisor/bcc.
[76] Brendan Gregg et al. biotop. https://github.com/iovisor/bcc/blob/

master/libbpf-tools/biotop.bpf.c.
[77] Brendan Gregg et al. readahead. https://github.com/iovisor/bcc/blob/

master/libbpf-tools/readahead.bpf.c.
[78] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jie-

ung Kim, Vilhelm Sjöberg, and David Costanzo. {CertiKOS}: An
extensible architecture for building certified concurrent {OS} ker-
nels. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 653–669, 2016.

[79] Kris Van Hees. Tooling for semantic probing based on BPF and kernel

tracing. https://lpc.events/event/18/contributions/1925/, 2024.
[80] Ism Hong. Incorrect result while running biolatency.py with flags

option on kernel 4.9.266. https://github.com/iovisor/bcc/issues/3587.
[81] Ism Hong. runqlen / cpuunclaimed get wrong result for Linux kernel

> 5.7.0. https://github.com/iovisor/bcc/issues/4602.
[82] Jian Huang, Moinuddin K Qureshi, and Karsten Schwan. An evolu-

tionary study of linux memory management for fun and profit. In

2016 USENIX Annual Technical Conference (USENIX ATC 16), pages
465–478, 2016.

[83] Hsin-Wei Hung and Ardalan Amiri Sani. Brf: ebpf runtime fuzzer.

arXiv preprint arXiv:2305.08782, 2023.
[84] hygoni. mm/slab common: unify NUMA and UMA ver-

sion of tracepoints. https://github.com/torvalds/linux/commit/
11e9734bcb6a7361943f993eba4e97f5812120d8.

[85] IETF BPF Working Group. eBPF ELF Profile Specification, v0.1. https:
//datatracker.ietf.org/doc/html/draft-thaler-bpf-elf.

[86] Ayelet Israeli and Dror G Feitelson. The linux kernel as a case study

in software evolution. Journal of Systems and Software, 83(3):485–501,
2010.

[87] Jinghao Jia, Raj Sahu, Adam Oswald, DanWilliams, Michael V Le, and

Tianyin Xu. Kernel extension verification is untenable. In Proceedings
of the 19th Workshop on Hot Topics in Operating Systems, pages 150–
157, 2023.

[88] Jinghao Jia, Raj Sahu, Adam Oswald, DanWilliams, Michael V Le, and

Tianyin Xu. Kernel extension verification is untenable. In Proceedings
of the 19th Workshop on Hot Topics in Operating Systems, pages 150–
157, 2023.

[89] Jinghao Jia, YiFei Zhu, Dan Williams, Andrea Arcangeli, Claudio

Canella, Hubertus Franke, Tobin Feldman-Fitzthum, Dimitrios Skar-

latos, Daniel Gruss, and Tianyin Xu. Programmable system call

security with ebpf. arXiv preprint arXiv:2302.10366, 2023.
[90] Di Jin, Vaggelis Atlidakis, and Vasileios P Kemerlis. Epf: Evil packet

filter. In 2023 USENIX Annual Technical Conference (USENIX ATC 23),
pages 735–751, 2023.

[91] Di Jin, Alexander J Gaidis, and Vasileios P Kemerlis. {BeeBox}:
Hardening {BPF} against transient execution attacks. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 613–630, 2024.

[92] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos

Kozyrakis. Syrup: User-defined scheduling across the stack. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 605–620, 2021.

36

https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://netdevconf.info//0x14/session.html?talk-replacing-HTB-with-EDT-and-BPF
https://netdevconf.info//0x14/session.html?talk-replacing-HTB-with-EDT-and-BPF
https://www.kernel.org/doc/html/latest/process/backporting.html
https://www.kernel.org/doc/html/latest/process/backporting.html
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html#bpf-co-re-compile-once-run-everywhere
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html#bpf-co-re-compile-once-run-everywhere
https://docs.kernel.org/bpf/
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/bpf/kfuncs.html
https://docs.kernel.org/bpf/llvm_reloc.html
https://docs.kernel.org/bpf/llvm_reloc.html
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/prog_lsm.html
https://docs.kernel.org/bpf/libbpf/program_types.html
https://docs.kernel.org/bpf/libbpf/program_types.html
https://www.kernel.org/doc/html/next/bpf/btf.html
https://www.kernel.org/doc/html/next/bpf/btf.html
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/security/lsm.html
https://docs.kernel.org/security/lsm.html
https://docs.kernel.org/trace/tracepoints.html
https://docs.kernel.org/trace/tracepoints.html
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://github.com/systemd/systemd/pull/18145
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gccint/IPA-passes.html
https://gcc.gnu.org/onlinedocs/gccint/IPA-passes.html
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.com/google/buzzer
https://github.com/google/buzzer
https://www.brendangregg.com/blog/2020-11-04/bpf-co-re-btf-libbpf.html
https://www.brendangregg.com/blog/2020-11-04/bpf-co-re-btf-libbpf.html
https://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
https://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.brendangregg.com/bpf-performance-tools-book.html
http://www.brendangregg.com/bpf-performance-tools-book.html
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/blob/master/libbpf-tools/biotop.bpf.c
https://github.com/iovisor/bcc/blob/master/libbpf-tools/biotop.bpf.c
https://github.com/iovisor/bcc/blob/master/libbpf-tools/readahead.bpf.c
https://github.com/iovisor/bcc/blob/master/libbpf-tools/readahead.bpf.c
https://lpc.events/event/18/contributions/1925/
https://github.com/iovisor/bcc/issues/3587
https://github.com/iovisor/bcc/issues/4602
https://github.com/torvalds/linux/commit/11e9734bcb6a7361943f993eba4e97f5812120d8
https://github.com/torvalds/linux/commit/11e9734bcb6a7361943f993eba4e97f5812120d8
https://datatracker.ietf.org/doc/html/draft-thaler-bpf-elf
https://datatracker.ietf.org/doc/html/draft-thaler-bpf-elf

[93] Zen Kernel. Zen Patched Kernel Sources. https://github.com/zen-
kernel/zen-kernel.

[94] Kinvolk. Extending systemd security features with eBPF.

https://kinvolk.io/blog/2021/04/extending-systemd-security-
features-with-ebpf/.

[95] Tomasz Knopik. cachestat produces incorrect hit ratio. https://github.
com/iovisor/bcc/issues/2366.

[96] Oded Koren. A study of the linux kernel evolution. ACM SIGOPS
Operating Systems Review, 40(2):110–112, 2006.

[97] KubeArmor et al. KubeArmor. https://kubearmor.io/.
[98] Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin

Mohan, and Tianyin Xu. Verified programs can party: optimizing

kernel extensions via post-verification merging. In Proceedings of
the Seventeenth European Conference on Computer Systems, pages
283–299, 2022.

[99] Gleb Kurtsou. shlib-compat - ABI compatibility checker for shared li-

braries with symbol versioning. https://github.com/glk/shlib-compat.
[100] Hugo Lefeuvre, Gaulthier Gain, Vlad-Andrei Bădoiu, Daniel Dinca,

Vlad-Radu Schiller, Costin Raiciu, Felipe Huici, and Pierre Olivier.

Loupe: Driving the development of os compatibility layers. In Pro-
ceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
1, pages 249–267, 2024.

[101] Zhichuan Liang. Real World Debugging with eBPF. https://www.
usenix.org/system/files/srecon23apac_slides-liang_zhichuan.pdf.

[102] Soo Yee Lim, Xueyuan Han, and Thomas Pasquier. Unleashing un-

privileged ebpf potential with dynamic sandboxing. In Proceedings of
the 1st Workshop on eBPF and Kernel Extensions, pages 42–48, 2023.

[103] Soo Yee Lim, Tanya Prasad, Xueyuan Han, and Thomas Pasquier.

Safebpf: Hardware-assisted defense-in-depth for ebpf kernel exten-

sions. In Proceedings of the 2024 on Cloud Computing Security Work-
shop, pages 80–94, 2024.

[104] Arch Linux. Realtime Kernel Patchset. https://wiki.archlinux.org/
title/Realtime_kernel_patchset.

[105] Linux Lock et al. bpflock - eBPF driven security for locking and

auditing Linux machines. https://github.com/linux-lock/bpflock.
[106] Lockc et al. Lockc: Making containers more secure with eBPF and

Linux Security Modules (LSM). https://github.com/lockc-project/
lockc.

[107] Hongyi Lu, Shuai Wang, Yechang Wu, Wanning He, and Fengwei

Zhang. Moat: Towards safe bpf kernel extension. arXiv preprint
arXiv:2301.13421, 2023.

[108] Lumontec. Some freshness with Linux security modules and

eBPF. https://medium.com/@lumontec/some-freshness-with-linux-
security-modules-and-ebpf-676ac363a135.

[109] Alan Maguire. More co-re? taming the effects of compiler optimiza-

tions on bpf tracing. https://lpc.events/event/16/contributions/1371/,
2023.

[110] Alan Maguire. [patch v3 dwarves 0/8] dwarves: support encod-

ing of optimized-out parameters, removal of inconsistent static

functions. https://lore.kernel.org/bpf/1675790102-23037-1-git-send-
email-alan.maguire@oracle.com/, 2023.

[111] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma. Merlin: Multi-

tier Optimization of eBPF Code for Performance and Compactness. In

Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3, pages 639–653, 2024.

[112] Jerome Marchand. tools: Add support for the new block_io_* trace-

points. https://github.com/iovisor/bcc/pull/4691.
[113] Sebastiano Miano, Xiaoqi Chen, Ran Ben Basat, and Gianni Antichi.

Fast in-kernel traffic sketching in ebpf. ACM SIGCOMM Computer
Communication Review, 53(1):3–13, 2023.

[114] michael chuh. tools/ttysnoop: Fix wrong KER-

NEL_VERSION. https://github.com/iovisor/bcc/commit/

4fe6a6ae038eb3a70460be6619d697ffd8531738, 2022.
[115] Samantha Miller, Kaiyuan Zhang, Danyang Zhuo, Shibin Xu, Arvind

Krishnamurthy, and Thomas Anderson. Practical safe linux kernel

extensibility. In Proceedings of theWorkshop on Hot Topics in Operating
Systems, pages 170–176, 2019.

[116] Mohamed Husain Noor Mohamed, Xiaoguang Wang, and Binoy

Ravindran. Understanding the security of linux ebpf subsystem.

In Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop on
Systems, pages 87–92, 2023.

[117] Sarah Nadi and Ric Holt. The linux kernel: A case study of build sys-

tem variability. Journal of Software: Evolution and Process, 26(8):730–
746, 2014.

[118] Andrii Nakryiko. BPF Core Reference Guide. https://nakryiko.com/
posts/bpf-core-reference-guide/.

[119] Andrii Nakryiko. BPF Portability and Co-RE. https://nakryiko.com/
posts/bpf-portability-and-co-re/.

[120] Andrii Nakryiko et al. libbpf. https://github.com/libbpf/libbpf.
[121] George C Necula and Peter Lee. Safe kernel extensions without

run-time checking. In OSDI, volume 96, pages 229–243, 1996.

[122] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. Specifi-

cation and verification in the field: Applying formal methods to BPF

just-in-time compilers in the linux kernel. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages
41–61, 2020.

[123] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and

Binoy Ravindran. A Binary-compatible Unikernel. In Proceedings of
the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 59–73, 2019.

[124] OpenLogic. Top Enterprise Linux Distributions. https://www.
openlogic.com/blog/top-enterprise-linux-distributions.

[125] Linux Manual Pages. BPF Helpers. https://man7.org/linux/man-
pages/man7/bpf-helpers.7.html.

[126] Linux Manual Pages. tc-bpf(8) — Linux manual page. https://man7.
org/linux/man-pages/man8/tc-bpf.8.html.

[127] Siddhartha Patil. [PATCH 0/1] Revert change in pipe reader wakeup

behavior. https://lore.kernel.org/lkml/20210729222635.2937453-1-
sspatil@android.com/T/#u, 2021.

[128] Pixie et al. Pixie: Instant Kubernetes-Native Application Observability.

https://github.com/pixie-io/pixie.
[129] Tanel Poder. When eBPF task->stack->pt_regs reads return garbage

on the latest Linux kernels, blame Fred! https://tanelpoder.com/posts/
ebpf-pt-regs-error-on-linux-blame-fred/, 2025.

[130] Andrey Ponomarenko. ABI Compliance Checker. https://lvc.github.
io/abi-compliance-checker/.

[131] Elvis Pranskevichus and Yury Selivanov. What’s New In

Python 3.6. https://docs.python.org/3.6/whatsnew/3.6.html#new-
dict-implementation, 2016.

[132] BCC Project. biotop and biosnoop do not work under 5.19 kernel due

to missing blk_account_io_start kprobe. https://github.com/iovisor/
bcc/issues/4261.

[133] BCC Project. block tracepoints no longer have struct re-

quest queue arg. https://github.com/iovisor/bcc/commit/
3766f48c94372698b71c8c46ab1142c8f6dab9f0.

[134] BCC Project. libbpf-tools: fix for block io trace-

points changed. https://github.com/iovisor/bcc/commit/
3766f48c94372698b71c8c46ab1142c8f6dab9f0.

[135] IO Visor Project. XDP: eXpress Data Path. https://www.iovisor.org/
technology/xdp.

[136] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and KK Ra-

makrishnan. Spright: extracting the server from serverless com-

puting! high-performance ebpf-based event-driven, shared-memory

processing. In Proceedings of the ACM SIGCOMM 2022 Conference,
pages 780–794, 2022.

37

https://github.com/zen-kernel/zen-kernel
https://github.com/zen-kernel/zen-kernel
https://kinvolk.io/blog/2021/04/extending-systemd-security-features-with-ebpf/
https://kinvolk.io/blog/2021/04/extending-systemd-security-features-with-ebpf/
https://github.com/iovisor/bcc/issues/2366
https://github.com/iovisor/bcc/issues/2366
https://kubearmor.io/
https://github.com/glk/shlib-compat
https://www.usenix.org/system/files/srecon23apac_slides-liang_zhichuan.pdf
https://www.usenix.org/system/files/srecon23apac_slides-liang_zhichuan.pdf
https://wiki.archlinux.org/title/Realtime_kernel_patchset
https://wiki.archlinux.org/title/Realtime_kernel_patchset
https://github.com/linux-lock/bpflock
https://github.com/lockc-project/lockc
https://github.com/lockc-project/lockc
https://medium.com/@lumontec/some-freshness-with-linux-security-modules-and-ebpf-676ac363a135
https://medium.com/@lumontec/some-freshness-with-linux-security-modules-and-ebpf-676ac363a135
https://lpc.events/event/16/contributions/1371/
https://lore.kernel.org/bpf/1675790102-23037-1-git-send-email-alan.maguire@oracle.com/
https://lore.kernel.org/bpf/1675790102-23037-1-git-send-email-alan.maguire@oracle.com/
https://github.com/iovisor/bcc/pull/4691
https://github.com/iovisor/bcc/commit/4fe6a6ae038eb3a70460be6619d697ffd8531738
https://github.com/iovisor/bcc/commit/4fe6a6ae038eb3a70460be6619d697ffd8531738
https://nakryiko.com/posts/bpf-core-reference-guide/
https://nakryiko.com/posts/bpf-core-reference-guide/
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://github.com/libbpf/libbpf
https://www.openlogic.com/blog/top-enterprise-linux-distributions
https://www.openlogic.com/blog/top-enterprise-linux-distributions
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://lore.kernel.org/lkml/20210729222635.2937453-1-sspatil@android.com/T/#u
https://lore.kernel.org/lkml/20210729222635.2937453-1-sspatil@android.com/T/#u
https://github.com/pixie-io/pixie
https://tanelpoder.com/posts/ebpf-pt-regs-error-on-linux-blame-fred/
https://tanelpoder.com/posts/ebpf-pt-regs-error-on-linux-blame-fred/
https://lvc.github.io/abi-compliance-checker/
https://lvc.github.io/abi-compliance-checker/
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://github.com/iovisor/bcc/issues/4261
https://github.com/iovisor/bcc/issues/4261
https://github.com/iovisor/bcc/commit/3766f48c94372698b71c8c46ab1142c8f6dab9f0
https://github.com/iovisor/bcc/commit/3766f48c94372698b71c8c46ab1142c8f6dab9f0
https://github.com/iovisor/bcc/commit/3766f48c94372698b71c8c46ab1142c8f6dab9f0
https://github.com/iovisor/bcc/commit/3766f48c94372698b71c8c46ab1142c8f6dab9f0
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp

[137] Xiang Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael

Stumm, and Ding Yuan. An analysis of performance evolution of

linux’s core operations. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 554–569, 2019.

[138] Alastair Robertson et al. bpftrace. https://github.com/bpftrace/
bpftrace.

[139] Steven Rostedt. [Ksummit-discuss] [MAINTAINERS SUMMIT] How

far to go with eBPF. https://lore.kernel.org/all/20220616122634.
6e11e58c@gandalf.local.home/.

[140] Eric Sage and Melissa Kilby. Think eBPF for Kernel Security Mon-

itoring Falco at Apple Eric Sage & Melissa Kilby, Apple. https:
//www.youtube.com/watch?v=ZBlJSr6XkN8.

[141] Simon Scannell. Fuzzing for eBPF JIT bugs in the Linux kernel.

https://scannell.io/posts/ebpf-fuzzing/.
[142] Casey Schaufler. Re: [PATCH bpf-next v13 4/7] landlock: Add ptrace

LSM hooks. https://lore.kernel.org/lkml/637736ef-c48e-ac3b-3eef-
8a6a095a96f1@schaufler-ca.com/.

[143] Aqua Security et al. Tracee: Linux Runtime Security and Forensics

using eBPF. https://github.com/aquasecurity/tracee.
[144] Margo I Seltzer, Yasuhiro Endo, Christopher Small, and Keith A

Smith. Dealing with disaster: Surviving misbehaved kernel exten-

sions. SIGOPS Operating Systems Review, 30(213-228):10–1145, 1996.
[145] Junxian Shen, Han Zhang, Yang Xiang, Xingang Shi, Xinrui Li, Yunxi

Shen, Zijian Zhang, Yongxiang Wu, Xia Yin, Jilong Wang, et al.

Network-centric distributed tracing with deepflow: Troubleshooting

your microservices in zero code. In Proceedings of the ACM SIGCOMM
2023 Conference, pages 420–437, 2023.

[146] KP Singh. Re: [PATCH bpf-next v1 00/13] MAC

and Audit policy using eBPF (KRSI). https://
lwn.net/ml/linux-kernel/CACYkzJ5nYh7eGuru4vQ=
2ZWumGPszBRbgqxmhd4WQRXktAUKkQ@mail.gmail.com/.

[147] KP Singh. Security Auditing and Enforcement using eBPF - KP

Singh, Google - Full Keynote. https://www.youtube.com/watch?v=
XFJw37Vwzcc.

[148] snorez. ebpf-fuzzer: fuzz the linux kernel bpf verifier. https://github.
com/snorez/ebpf-fuzzer.

[149] Yonghong Song. [PATCH bpf-next] bcc: Fix ttysnoop for kernel >

v5.11 and other config changes. https://github.com/iovisor/bcc/pull/
3360/files#r611360515, 2021.

[150] Yonghong Song and Alan Maguire. Kernel func tracing in the face

of compiler optimization. https://lpc.events/event/18/contributions/
1945/, 2024.

[151] Alexei Starovoitov. Re: [PATCH bpf-next v13 4/7] landlock: Add

ptrace LSM hooks. https://lore.kernel.org/lkml/20191105215453.
szhdkrvuekwfz6le@ast-mbp.dhcp.thefacebook.com/.

[152] Alexei Starovoitov. [PATCH v3 bpf-next 00/11] bpf: revolutionize bpf

tracing. https://https://lore.kernel.org/all/20191016032505.2089704-1-
ast@kernel.org/, 2019.

[153] Andrew Suffield. icheck - C interface ABI/API checker. https://
manpages.ubuntu.com/manpages/noble/man1/icheck.1.html.

[154] Hao Sun and Zhendong Su. Validating the {eBPF} verifier via state
embedding. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 615–628, 2024.

[155] Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and

Yu Jiang. Finding correctness bugs in ebpf verifier with structured

and sanitized program. 2024.

[156] Sysdig et al. Falco: Cloud Native Runtime Security. https://github.
com/falcosecurity/falco.

[157] systemd. systemd RestrictFileSystems=. https://www.
freedesktop.org/software/systemd/man/latest/systemd.exec.
html#RestrictFileSystems=.

[158] Dave Thaler. eBPF ELF Profile Specification, v0.1. Internet-Draft

draft-thaler-bpf-elf-00, Internet Engineering Task Force, March 2023.

Work in Progress.

[159] Dave Thaler. BPF Instruction Set Architecture (ISA). Internet-Draft

draft-ietf-bpf-isa-03, Internet Engineering Task Force, May 2024.

Work in Progress.

[160] Alok Tiagi, Hariharan Ananthakrishnan, Ivan Porto Carrero, and

Keerti Lakshminarayan. How Netflix uses eBPF flow logs at scale for

network insight. https://netflixtechblog.com/how-netflix-uses-ebpf-
flow-logs-at-scale-for-network-insight-e3ea997dca96.

[161] Rafael David Tinoco. Cannot create probe on symbols with duplicate

entries in kallsyms (multiple addresses) in recent kernels. https:
//github.com/aquasecurity/tracee/issues/3653, 2023.

[162] Linus Torvalds. Re: [BREAKAGE] Since 4.18, kernel sets

SB_I_NODEV implicitly on userns mounts, breaking systemd-

nspawn. https://lkml.org/lkml/2018/12/22/232.
[163] Linus Torvalds. Re: LVM snapshot broke between 4.14 and 4.16.

https://lkml.org/lkml/2018/8/3/621.
[164] Linus Torvalds. Re: [Regression w/ patch] Media commit causes user

space to misbahave (was: Re: Linux 3.8-rc1). https://lkml.org/lkml/
2012/12/23/75.

[165] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E

Porter. A study of modern linux api usage and compatibility: What

to support when you’re supporting. In Proceedings of the Eleventh
European Conference on Computer Systems, pages 1–16, 2016.

[166] Manas Tungare, Pardha S Pyla, Miten Sampat, and Manuel A Pérez-

Quinones. Syncables: A framework to support seamless data migra-

tion across multiple platforms. In 2007 IEEE International Conference
on Portable Information Devices, pages 1–5. IEEE, 2007.

[167] Ubuntu. Ubuntu Linux Packages. https://launchpad.net/ubuntu/
+source/linux/.

[168] Arjan van de Ven. Fix powerTOP regression with 2.6.39-rc5. https:
//lore.kernel.org/all/4DC45537.6070609@linux.intel.com/T/#u, 2011.

[169] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and

Santosh Nagarakatte. Verifying the verifier: ebpf range analysis veri-

fication. In International Conference on Computer Aided Verification,
pages 226–251. Springer, 2023.

[170] Krister Walfridsson. Interprocedural Optimization in

GCC. https://kristerw.blogspot.com/2017/05/interprocedural-
optimization-in-gcc.html.

[171] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang,

Bo Yang, Hai Yu, Zhiliang Zhu, and Shing-Chi Cheung. Do the

dependency conflicts in my project matter? In Proceedings of the
2018 26th ACM joint meeting on european software engineering confer-
ence and symposium on the foundations of software engineering, pages
319–330, 2018.

[172] Matthew Wilcox. [PATCH v14 000/138] Memory folios. https://lore.
kernel.org/all/20210715033704.692967-1-willy@infradead.org/T/#u.

[173] Thomas Wirtgen, Tom Rousseaux, Quentin De Coninck, Nicolas

Rybowski, Randy Bush, Laurent Vanbever, Axel Legay, and Olivier

Bonaventure. {xBGP}: Faster innovation in routing protocols. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 575–592, 2023.

[174] Hyrum Wright. Hyrum’s law. https://www.hyrumslaw.com/.

[175] Xi Wang and David Lazar and Nickolai Zeldovich and Adam Chlipala

and Zachary Tatlock. Jitk: A trustworthy In-Kernel interpreter infras-

tructure. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 33–47, Broomfield, CO, October

2014. USENIX Association.

[176] Xiheng. How Does Alibaba Cloud Build High-Performance

Cloud-Native Pod Networks in Production Environments?

https://www.alibabacloud.com/blog/how-does-alibaba-cloud-
build-high-performance-cloud-native-pod-networks-in-
production-environments_596590.

[177] Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He,

and Jiwu Shu. 𝜆-IO: A unified IO stack for computational storage. In

21st USENIX Conference on File and Storage Technologies (FAST 23),

38

https://github.com/bpftrace/bpftrace
https://github.com/bpftrace/bpftrace
https://lore.kernel.org/all/20220616122634.6e11e58c@gandalf.local.home/
https://lore.kernel.org/all/20220616122634.6e11e58c@gandalf.local.home/
https://www.youtube.com/watch?v=ZBlJSr6XkN8
https://www.youtube.com/watch?v=ZBlJSr6XkN8
https://scannell.io/posts/ebpf-fuzzing/
https://lore.kernel.org/lkml/637736ef-c48e-ac3b-3eef-8a6a095a96f1@schaufler-ca.com/
https://lore.kernel.org/lkml/637736ef-c48e-ac3b-3eef-8a6a095a96f1@schaufler-ca.com/
https://github.com/aquasecurity/tracee
https://lwn.net/ml/linux-kernel/CACYkzJ5nYh7eGuru4vQ=2ZWumGPszBRbgqxmhd4WQRXktAUKkQ@mail.gmail.com/
https://lwn.net/ml/linux-kernel/CACYkzJ5nYh7eGuru4vQ=2ZWumGPszBRbgqxmhd4WQRXktAUKkQ@mail.gmail.com/
https://lwn.net/ml/linux-kernel/CACYkzJ5nYh7eGuru4vQ=2ZWumGPszBRbgqxmhd4WQRXktAUKkQ@mail.gmail.com/
https://www.youtube.com/watch?v=XFJw37Vwzcc
https://www.youtube.com/watch?v=XFJw37Vwzcc
https://github.com/snorez/ebpf-fuzzer
https://github.com/snorez/ebpf-fuzzer
https://github.com/iovisor/bcc/pull/3360/files#r611360515
https://github.com/iovisor/bcc/pull/3360/files#r611360515
https://lpc.events/event/18/contributions/1945/
https://lpc.events/event/18/contributions/1945/
https://lore.kernel.org/lkml/20191105215453.szhdkrvuekwfz6le@ast-mbp.dhcp.thefacebook.com/
https://lore.kernel.org/lkml/20191105215453.szhdkrvuekwfz6le@ast-mbp.dhcp.thefacebook.com/
https://https://lore.kernel.org/all/20191016032505.2089704-1-ast@kernel.org/
https://https://lore.kernel.org/all/20191016032505.2089704-1-ast@kernel.org/
https://manpages.ubuntu.com/manpages/noble/man1/icheck.1.html
https://manpages.ubuntu.com/manpages/noble/man1/icheck.1.html
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://www.freedesktop.org/software/systemd/man/latest/systemd.exec.html#RestrictFileSystems=
https://www.freedesktop.org/software/systemd/man/latest/systemd.exec.html#RestrictFileSystems=
https://www.freedesktop.org/software/systemd/man/latest/systemd.exec.html#RestrictFileSystems=
https://netflixtechblog.com/how-netflix-uses-ebpf-flow-logs-at-scale-for-network-insight-e3ea997dca96
https://netflixtechblog.com/how-netflix-uses-ebpf-flow-logs-at-scale-for-network-insight-e3ea997dca96
https://github.com/aquasecurity/tracee/issues/3653
https://github.com/aquasecurity/tracee/issues/3653
https://lkml.org/lkml/2018/12/22/232
https://lkml.org/lkml/2018/8/3/621
https://lkml.org/lkml/2012/12/23/75
https://lkml.org/lkml/2012/12/23/75
https://launchpad.net/ubuntu/+source/linux/
https://launchpad.net/ubuntu/+source/linux/
https://lore.kernel.org/all/4DC45537.6070609@linux.intel.com/T/#u
https://lore.kernel.org/all/4DC45537.6070609@linux.intel.com/T/#u
https://kristerw.blogspot.com/2017/05/interprocedural-optimization-in-gcc.html
https://kristerw.blogspot.com/2017/05/interprocedural-optimization-in-gcc.html
https://lore.kernel.org/all/20210715033704.692967-1-willy@infradead.org/T/#u
https://lore.kernel.org/all/20210715033704.692967-1-willy@infradead.org/T/#u
https://www.alibabacloud.com/blog/how-does-alibaba-cloud-build-high-performance-cloud-native-pod-networks-in-production-environments_596590
https://www.alibabacloud.com/blog/how-does-alibaba-cloud-build-high-performance-cloud-native-pod-networks-in-production-environments_596590
https://www.alibabacloud.com/blog/how-does-alibaba-cloud-build-high-performance-cloud-native-pod-networks-in-production-environments_596590

pages 347–362, 2023.

[178] Hyeonggon Yoo. mm/slab common: unify NUMA and UMA version

of tracepoints. https://github.com/torvalds/linux/commit/11e9734.
[179] ZDNet. Linus Torvalds talks about coming back to work on

Linux. https://www.zdnet.com/article/linus-torvalds-talks-about-
coming-back-to-work-on-linux/.

[180] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues,

Shan Lu, and Ding Yuan. Understanding and detecting software

upgrade failures in distributed systems. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pages 116–
131, 2021.

[181] Shawn Zhong. libpf-tools/readahead: Fix attachment failure since

v5.16. https://github.com/iovisor/bcc/pull/5086, 2024.
[182] Shawn Zhong. [proposal] tracing inline functions. https://github.

com/iovisor/bcc/issues/5093, 2024.
[183] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,

Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan

Stutsman, et al. XRP:In-Kernel storage functions with eBPF. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), pages 375–393, 2022.

[184] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan

Yu. Electrode: Accelerating distributed protocols with eBPF. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 1391–1407, 2023.

[185] Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya Dharanipragada,

and Minlan Yu. {DINT}: Fast {In-Kernel} distributed transactions

with {eBPF}. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), pages 401–417, 2024.

[186] Tal Zussman, Teng Jiang, and Asaf Cidon. Custom page fault handling

with ebpf. In Proceedings of the ACM SIGCOMM 2024 Workshop on
eBPF and Kernel Extensions, pages 71–73, 2024.

[187] Tal Zussman, Ioannis Zarkadas, Jeremy Carin, Andrew Cheng, Hu-

bertus Franke, Jonas Pfefferle, and Asaf Cidon. Cache is king: Smart

page eviction with ebpf. arXiv preprint arXiv:2502.02750, 2025.

39

https://github.com/torvalds/linux/commit/11e9734
https://www.zdnet.com/article/linus-torvalds-talks-about-coming-back-to-work-on-linux/
https://www.zdnet.com/article/linus-torvalds-talks-about-coming-back-to-work-on-linux/
https://github.com/iovisor/bcc/pull/5086
https://github.com/iovisor/bcc/issues/5093
https://github.com/iovisor/bcc/issues/5093

A Artifact Appendix

A.1 Abstract

The artifact for DepSurf includes the following components:

• The source code of the depsurf Python library that extracts

and analyzes kernel dependency surfaces, and generates

dependency reports for eBPF programs.

• A set of Jupyter notebooks to drive the depsurf library

and reproduce the experiments in the paper.

• A dataset of kernel dependency surfaces, including infor-

mation about the kernel functions, structs, tracepoints,

and system calls.

A.2 Description & Requirements

A.2.1 How to access The artifact for this paper is avail-

able at https://github.com/ShawnZhong/DepSurf in branch

eurosys25 and archived at https://doi.org/10.5281/zenodo.
14881217.

A.2.2 Hardware dependencies Generating the dataset

requires a machine with at least 64GB of disk space to store

the intermediate data produced.

A.2.3 Software dependencies The artifact requires Python

3.11 or higher with the following packages:

• launchpadlib>=2.1.0 (optional)

• matplotlib>=3.10.0

• notebook>=7.3.2

• pandas>=2.2.3

• pyelftools>=0.31

Additional dependencies are listed in 00_deps.ipynb.

A.2.4 Benchmarks The dataset is available at https://
github.com/ShawnZhong/DepSurf-dataset. The code used
to generate it is provided in the main repository. Here we

provide some examples of the format of the dataset.

Function Status. The following shows the status of vfs_fsync.

1 {
2 "name": "vfs_fsync",
3 "collision_type": "Unique Global",
4 "inline_type": "Partially inlined",
5 "funcs": [
6 {
7 "addr": 18446744071582330835,
8 "name": "vfs_fsync",
9 "external": true,
10 "loc": "fs/sync.c:213",
11 "file": "fs/sync.c",
12 "inline": "not declared, inlined",
13 "caller_inline": [
14 "fs/sync.c:__ia32_sys_fdatasync",
15 "fs/sync.c:__x64_sys_fdatasync",
16 "fs/sync.c:__ia32_sys_fsync",
17 "fs/sync.c:__x64_sys_fsync"
18],
19 "caller_func": [
20 "fs/aio.c:aio_fsync_work",
21 "fs/iomap/swapfile.c:iomap_swapfile_activate",
22 "drivers/block/loop.c:do_req_filebacked",
23 "drivers/block/loop.c:__loop_update_dio",

24 "drivers/md/md-bitmap.c:md_bitmap_create"
25]
26 }
27],
28 "symbols": [
29 {
30 "addr": 18446744071582330944,
31 "name": "vfs_fsync",
32 "section": ".text",
33 "bind": "STB_GLOBAL",
34 "size": 121
35 }
36]
37 }

Function Declaration. The following shows the type of vfs_fsync.

1 {
2 "kind": "FUNC",
3 "name": "vfs_fsync",
4 "type": {
5 "kind": "FUNC_PROTO",
6 "params": [
7 {
8 "name": "file",
9 "type": {
10 "kind": "PTR",
11 "type": {
12 "kind": "STRUCT",
13 "name": "file"
14 }
15 }
16 },
17 {
18 "name": "datasync",
19 "type": {
20 "kind": "INT",
21 "name": "int"
22 }
23 }
24],
25 "ret_type": {
26 "kind": "INT",
27 "name": "int"
28 }
29 }
30 }

Struct. The following shows the type of timespec.

1 {
2 "kind": "STRUCT",
3 "name": "timespec",
4 "size": 16,
5 "members": [
6 {
7 "name": "tv_sec",
8 "bits_offset": 0,
9 "type": {
10 "kind": "TYPEDEF",
11 "name": "__kernel_time_t"
12 }
13 },
14 {
15 "name": "tv_nsec",
16 "bits_offset": 64,
17 "type": {

40

https://github.com/ShawnZhong/DepSurf
https://doi.org/10.5281/zenodo.14881217
https://doi.org/10.5281/zenodo.14881217
https://github.com/ShawnZhong/DepSurf/blob/main/00_deps.ipynb
https://github.com/ShawnZhong/DepSurf-dataset
https://github.com/ShawnZhong/DepSurf-dataset

18 "kind": "INT",
19 "name": "long int"
20 }
21 }
22]
23 }

Tracepoint. The following shows an excerpt of tracepoint

timer_init.

1 {
2 "class_name": "timer_class",
3 "event_name": "timer_init",
4 "func_name": "trace_event_raw_event_timer_class",
5 "struct_name": "trace_event_raw_timer_class",
6 "fmt_str": "\"timer=%p\", REC->timer",
7 "func": {
8 "kind": "FUNC",
9 "name": "trace_event_raw_event_timer_class",
10 "type": {
11 "kind": "FUNC_PROTO",
12 "params": [
13 {
14 "name": "__data",
15 "type": {
16 "kind": "PTR",
17 "type": {
18 "name": "void",
19 "kind": "VOID"
20 }
21 }
22 },
23 {
24 "name": "timer",
25 "type": {
26 "kind": "PTR",
27 "type": {
28 "kind": "STRUCT",
29 "name": "timer_list"
30 }
31 }
32 }
33],
34 "ret_type": {
35 "name": "void",
36 "kind": "VOID"
37 }
38 }
39 },
40 "struct": {
41 "kind": "STRUCT",
42 "name": "trace_event_raw_timer_class",
43 "size": 16,
44 "members": [
45 {
46 "name": "ent",
47 "bits_offset": 0,
48 "type": {
49 "kind": "STRUCT",
50 "name": "trace_entry"
51 }
52 }, // ...
53]
54 }
55 }

A.3 Set-up

Please follow the README.md in the main repository to set

up the environment.

A.4 Evaluation workflow

A.4.1 Major Claims

• (C1): Kernel source code evolution significantly impacts

dependency surfaces, as demonstrated by experiments

(E1) with results in Table 3 and Table 4.

• (C2): Different kernel configurations lead to variations in

dependency surfaces, as shown by experiments (E2) with

results in Table 5.

• (C3): The kernel build process affects dependency sur-

faces. This is validated by experiments (E3) with results

in Figure 5, Figure 6, and Table 6.

• (C4): Dependency mismatches have a broad impact on

eBPF programs, as revealed by experiments (E4) with re-

sults in Table 7 and Table 8.

A.4.2 Experiments

• (E1) Analysis on Kernel Source Code [5 minutes]: To repro-

duce the analysis results on kernel source code evolution,

run:

– 30_diff.ipynb to generate the diffs

– 35_src.ipynb for Table 3

– 36_breakdown.ipynb for Table 4

• (E2) Analysis on Kernel Configuration [5 minutes]: To

analyze how different kernel configurations affect depen-

dency surfaces, run:

– 30_diff.ipynb to generate the diffs

– 39_config.ipynb to reproduce Table 5

• (E3) Analysis on Kernel Compilation [1 minute]: To exam-

ine compilation effects on dependency surfaces, run:

– 40_inline.ipynb for function inlining (Figure 5)

– 41_transform.ipynb for function transformation (Fig-

ure 6)

– 42_dup.ipynb for function duplication (Table 6)

• (E4) eBPF Program Analysis [5 minutes]: To analyze de-

pendency mismatches in eBPF programs, run:

– 50_programs.ipynb to compile and analyze eBPF pro-

grams

– 52_summary.ipynb for summary statistics (Table 7 and

Table 8)

A.5 Notes on Reusability

Additional kernel images can be added to the dataset by

adding the URL to the kernel image to 11_download.ipynb.

Additional eBPF programs can be added to the PROG_PATHS

list in 50_programs.ipynb.

41

https://github.com/ShawnZhong/DepSurf/blob/main/30_diff.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/35_src.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/36_breakdown.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/30_diff.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/39_config.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/40_inline.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/41_transform.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/42_dup.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/50_programs.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/52_summary.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/11_download.ipynb
https://github.com/ShawnZhong/DepSurf/blob/main/50_programs.ipynb

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Prevalence of eBPF-based Kernel Extensions
	2.2 eBPF-Based Kernel Extensions
	2.3 Dependency Surface
	2.4 eBPF Portability
	2.5 Case Study: A Two-Year Journey to Fix biotop

	3 DepSurf Overview
	3.1 Design
	3.2 Analysis Methodology
	3.3 Usage Scenarios
	3.4 Implementation

	4 Dependency Surface Analysis
	4.1 Kernel Source Code
	4.2 Kernel Configuration
	4.3 Kernel Compilation

	5 Dependency Set Analysis
	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability

